
■«•^W»"

B O LT BERANEK. AND NEWMAN > * c

CONSUITING

BBN REPORT NO. 3302

A.I. REPORT NO. 41

E V E l O P M E N T RESEARCH

y

CO INTELLIGENT ON-LJNE ASSISTANT AND TUTOR SYSTEM

Technical Progress Report No. 1

18 September 1975 to 31 March 1976

Sponsored by

Advanced Research Projects Agency

ARPA Order No. 3091

ID!
D D C

m 1° 1376

'.Au

rr K
" 36,

L „ ljiilitaited,

4

I
I
I
I

This research was
Agency of the Depa
under Contract No.

supported by the Advanced Res"^h Projects
rtment of Defense and was monitored by ONR
N00014-76-0476

BOSTON WASHINGTON CHICAGO
HOUSTON LOS ANGEIES OXNARD SAN FRANCISCO

mmmmmmmasiumm

— ". ■ I l.l . - .. 1 ' ;- .— mi- ---m ■ 1

Unclassified
SeCURITV CLASSIFICATION OF THIS PAGE (Whmn Bum BnlmwmO)

n

WUSA

-.;. :*.

I'

REPORT DOCUMENTATION PAGE
1 NEPONT NUMBCM

BBN Report N0^3 3b2 s. ^ I d

I. «OVT ACCESSION NO

4. TITLE (■•id Jub»«;»)

INTELLIGENT ON-LINE ^S_S I STANT AND JUTOR,
\ SYSTEM, IT 6 o nn1Ca i Progress
' 1UIJ56.L L Ho. 1, 18 September 1975 to

31 March 1976
l;..AUTMOH(.J

/., Mario C. /Grignetti, Alice K. 'Hartley,
Catherine /Hausmann, William L. Ash/
Robert J. /bobrowy Ala'n Bell

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Bolt Beranek and Newman Inc
50 Moulton St.
Cambridge, MA 02138

READ INSTRUCTIONS
BEFORE COMPLETING FORM.

S. RECIPIENT'S CATALOG NUMBER

». T^PE OF REPORT « PERIOD COfVERED

Tech>^roq. R&pt . ^/l .,
31 Mar«*» 76 18 Sept; Ifs-

«. PERFORMING ORG. REPORT NUMBER

BBN Report No. 3302
S. CONTRACT OR GRANT NUMBERS

N00014-76-C-0476,

11. CONTROLLING OFFICE NAME AND ADDRESS

ONh
Department of the Navy
Arlington. VA 22217

Tt MONITORING AGENCY NAME S ADDRESV" JHI'rmil Inm Conlnlllni Olli em)

IJ NUMBER OF PACES

IS. SECURITY CLASS. <ol Ihli ttport)

Unclassified

IS«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

1«. DISTRIBUTION STATEMENT fof (»if« Ä»pofO

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce, for sale to the
general public .

17. DISTRIBUTION STATEMENT (ol lh» tbtltmcl mtfntl In Block 30, II dlllnttl Inm Report;

■ . .r L- f '. €. s

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Conllnum on nw «Id« /* nocooiary and Idtnlllr by b'oc» nuoifcor)

Artificial Intelligence, Computer Assisted Instruction, Natural
Language Understanding, Syntactic Analysis, Semantic Interpre-
tation, Semantic Networks, Question Answering, INTERLISP imple-
mentation, Writable Control Store, Memory mapping device

20. ABSTRACT (Conllnu* on royno »/do II MeoMory "id Idmntlly by block numbmr)

This report covers work performed from 18 September 1975 to 31
March 1976 under Contract No. N00014-76-C-0476. Our final ob-
jective is to develop a system to help computer-naive people
deal with their Intelligent Terminal, an envisioned personal
mini-computer of great sophistication and power. Our system will
be capable of mediating "intelligently" between these users and
the tools that vrill be available to them in the Intelligent

^/J

nn FORM
WU 1 JAN 7J 1473 EDITION OF t NOV SS IS OBSOLETE Unclassified oc

(tCUNITV CLAUIPICATION OF THIS PAGE (»hit Oat« Enlorod; fhwi Oat« 1

/

I —"*-

--*—-"T-r-iTT-Bx -r—x—: KW'W MM. . i i ".pi.." *-•' -- r^mt**^*

Unclassified

20. cont'd•
1

written in INTERLISP.

This report describes
A^i-^i i nur desicjn and implementa- This report descnoes in some detail our design * *

cUu?.r (a prototype 'f'"^'f J'.^'iu^jtnf I.^It.St

coild^e «He available in future Intelligent Terminals.

1 i

:

» ■

 \ L-

D

0
«CüRITY CLA.l.r.C*T,OH Of THI« PAO«.*.- ÖÄ ■"•.'•«

I

P"- -—~" •~ —■ • • •* •

INTELLIGENT ON LINK ASSISTANT AND TUTOR SYSTEM

:;

Technical Progess Report No. 1
18 September 1975 to 31 March 1976

ARPA Order No. 3091

Program Code No. 6D30

Name of Contractor:
Bolt Beranek and Newman Inc

Effective Date of Contract:
18 September 197 5

Contract Expiration Date:
31 December 1976

Amount of Contract:
$592 , 562.00

Contract No. N00014 - 76-C-0476

Principal Investigator:
Mario C. Griqnetti
(617)4 91-1850 x3 94

Scientific Officer:
Gordon Goldstein

Short Title of Work:
INTELLIGENT ON-LINE ASSISTANT

AND TUTOR (INLAT)

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 3091

::

L

The views and conclusions contained in this document are those of
the authors and should not be interpreted as -c-S-1/^^^n(

the official policies, either expressed or implied, of the Advanced

Resea rch Projects Agency or the U.S. Government

■iiiMwwwwwwn11—''"

<mmm—*^^^^^*mr

TABLE OF CONTENTS

SECTION 1 INTRODUCTION 1

SECTION 2 INTERLISP-ll 6

Introduction and ouroose 6

Hardware 7

Writable Control Store - Purpose and Description 8

Memory Maooinq 11

Aqe Distribution Registers 14

Software Implementation 15

Operating environment 15

LISP kernel 17

New LISP code 20
I

Present Status 21

Hardware 22

Software 22

Proanosis ■ 22

Schedule 23

SECTION 3 "INTELLIGENT" ON-LINE ASSISTANTS AND TUTORS 24

Introduction 24

Tutorials for systematic teaching 25

Methodology of buildinq tutorials 27

The tutorial as a stand-alone document 30

Quest ion-Answering 3^

Collecting sample Questions 33 :•■

r.. _.«*»yr---

Paqe

Analyzing the sample questions

Parsing

Semantic Interpretation

Semantic Network

Cy££§!}*: Control Structure

APPENDIX A - Specifications

APPENDIX B - PDP-li Memory Mapping Device

APPENDIX C - A Tutorial Introduction to Hermes

36

37 .

39

44 D
48

53

61

76

v

JMfcflifi' : ■' - ■.ji ■to^ai^a^^u.

' V — - II II ■■ II-

-r-

Pa'je 3

::

n

■^

• ■

*

m

SECTION 1. INTRODUCTION

Wc are interested in making it easy for comnuter-naive

people to sit in front of a computer terminal (eventually an

Intelligent Terminal) and learn how to use the computer

tools available through it. We believe that a good way to

achieve this qoal is by means of a reactive learninq

environment, where tutorial services ranqinq from systematic

teachinq to occasional on-line help are made easily and

immediatelv available to users.

The three fundamental asoects that such a learninq

environment must incorporate are:

1) well-orqanized tutorials, i.e. a set of lessons that

svstematicaliv teach the how-to knowledqe that is

essential for useful operation of a computer tool;

2) the ability to "look" over the user's shoulder and be

"aware" of what he is doinq, so that when needed, the

system can offer helo that is specific to the task the

user is enqaqed in.

3) the ability to perform these services in response to user

reauests expressed in natural lanquaqe (Enqlish). .
I

Since such reactive learninq environments incorporate

Artificial Intelliqence techniaues, and to the extent that

they appear to have features that mimic human intelliqence,

we have coined for them the acronym INLAT ("Intelligent"

oN-Line Assistant and Tutor).

■■:■■■ -

,-■•■.■ »IT 'J^-i

Paqe

The specific objectives of the present contract are to

develop INLAT's for three of the tools that may conceivably

be the mainstays of future Intelligent Terminals. These

tools are Hermes (a computer mail processing system), the

Rand editor (a multi-window, scope editor) and a News

Service information retrieval system (such as the New York

Times Information Bank or Stanford's News Service program).

IlxLAT's can be best developed in a programming

environment that makes it easy to turn out large and

sophisticated systems in relatively short times. It is very

important, especially when dealing with potentially large

populations of computer-naive users, to be able to

drastically revise design concepts, approaches, and

implementations. We believe that INTERLISP is the best

available "milieu" in which this fast turn-over development

effort can take place. Not only is it based on a language

of enormous power and flexibility (LISP), the work horse of

most AI work today; it is also a system that has "built in"

many of the facilities (such as the Do What I Mean (DWIM)

and the Programmer's Assistant) that are considered

essential in an Intelligent Terminal. For these reasons,

the crucial part of the present effort is to provide an

INTERLISP environment on the machine that has been selected

as a first prototype for the Intelligent Terminal, ~ the

DEC PDP-11.

~ • *""—" ' ^—. .~«r- " •■« •

u

Page

.

D
D

■

The body of the Report begins with a description of our

design goals and the work performed in briminqupan

1NT2RLISP system on the PDP-11. In the remainder of the

Report we describe the work performed to implement our

INLAT. Although the INLAT is intended as an aid in the use

of multiple tools, the bulk of our work in this area to date

has been centered on orovidinq a counselor and assistant for

the Hermes message system beinq develooed independently at

BBN. Therefore, our description is limited to an

INLAT-Hermes system.

Paqe 6

SECTION 2

INTERLISP-11

Il!.^19^uc^l211 ^H^ Purpose

The main objective of our Intelligent Terminal work is

to make it easy for computer-naive people to learn how to

work with a computer capable of performing, a number of

clerical functions. We believe that our objective can be

achieved if we provide tutorial and on-line help facilities

that rely heavily on natural language understanding

techniques. These techniques have been developed for the

most part using LISP programming environments of great

sophistication and power, of which INTERLISP is perhaps the

best known.

Although INTERLISP is a formidably powerful tool, and

its advantages for AI work are widely recognized, its usage

has been relegated to, and is commonly associated with

powerful, large machines. In recent years, however, the

technological advances in computer hardware have been so

dramatic that today's "minicomputers" have almost equalled

the power of such mainstays of LISP as the PDP-10, and are

available at a fraction of the letter's cost. Therefore,

one of our most important subgoals is to bring up a full

INTERLISP system (as it now exists in the PDP-10 under

TENEX) on a PDP-11 computer. This we call INTERLISP-11.

■

vvrmr -T^^HKSEWW^ . - -

Page

More specificallyi what wo want to orovi-ic is an

INTERLISP environment with the following characteristics:

a) serves a single user,

b) is fully compatible with INTERLISP,

c) runs at half the speed of INTERLISP-10 when there is only

one user (therefore it should anpear much faster than

INTERLISP-10 under "normal" TENEX load conditions),

d) has a larger address space (4 million words) than

IMTERLISP-IO (which is known to be too small), and

e) minimizes machine dependent code for easier exporting to

another comouter.

In the rest of this section we describe our plan for

achievinq these purposes, We begin <»bv describing the

hardware configuration that we selected and the reasons for

choosinq it. Next we describe the software work that is

needed to accomplish our goals with the selected hardware.

Finally, we describe the oresent status of the work and our

oroqnosis of what will be done by when.

Hardware

The characteristics of the desired INTERLISP-11

environment impose three kinds of broad requirements on the

hardware. These reouirements comorise the ability for:

1) efficiently executinq LISP compiled code and storing

comoactly LISP data structures (mainlv lists),

—^— ■— " ...■.*W--mmmv. %* ■-_

■ : :. " ..v. >■'V;.,.::^.-. ^-V'— ' - ■■

Page 8

2) dealing with a larqe virtual address space,

3) running the UNIX operating system and the Rand software

developed to run under it, especially RITA and the Rand

Editor.

In order to satisfy the third requirement we need a

system centered on the PDP-11 computer; the other two

requirements impose a particular selection within the PDP-11

family and the incorporation of extra hardware.

Specifically, the hardware configuration that was specified

for our purpose consists of a DEC PDP-11/40 processor with

128K words of core memory, a fast 512K words fixed head disk

for swapping (R304), and a slower 28M words disk for

secondary swapping and filing (Telefile). In addition, we

have an interface for network communications (IMP-11A), a

Writable Control Store (WCS) for efficient and compact

microcoding of compiled LISP code and for compact list

structure, a specially designed Memory Mapping Device (MMD)

to facilitate the implementation of the large address space,

and a number of other peripheral devices. In what follows

we will describe only the two non-standard components in the

above configuration, the WCS and the MMD.

Writable Control Store -- Purpose and Description

The Writable Control Store (WCS) was designed at

Carnegie Mellon University by Professor Samuel Fuller and

r ■ ^,... ^,**f i

Paqe 9

D

;:

his group, and it is used extensivelv in their Hydra

proiect. It provides a way of auqmenting the capabilities

of the standard 11/40 processor which is crucially iiTioortant

for our purposes. The most Important advantage derived from

using the WCS is that it allows us to desiqn an instruction

set for LISP-compiled code that is independent of the host

machine instruction set and is therefore better suited to

LISP idiosyncrasies. The resultant object programs are

therefore more comoact and run more efficiently than their

PDP-10 counterparts. In terms of required memory size, we

estimate that object proqrams written in the above set will

be only 1/3 as larqe (in terms of number of bits) as

eouivalent PDP-10 comoiled LISP. Alternately, they will

renuire 3/4 as many 16-bit PDP-11 words as reouired on the

PDP-10 {36-bit words). Finally, because of its relative

machine independence, the new object code will permit

substantially easier transfer to newer, more cost-effective

hardware when it becomes available.

The 11/40 processor is implemented with 256ii4iS, words (56

bits) of read-only microcode. It is desiqned so that the

11/40 options, such as the Extended Instruction Set and the

Floating Point instructions, can be installed by simply

plugging in additional microcode read-only memory modules.

This plug-in extensibilitv makes it possible to design and

build the WCS.*

*The 11/40 is the only PDP-11 able to accommodate the WCS

Page 10

The WCS has the following characteristics:

1) it provides 1000 words of additional high speed microcode

control store which can be used to implement critical

parts of INTERLISP-11, including the object code

execution "interpreter";

2) it is writable, facilitating both design and debugging,

and allowing for the possibility of swapping microcode

sots (such as one for the garbage collector);

3) it provides an extension of the underlying PDP-11 micro

machine, enhancing its generality. The standard PDP-11

ROM has 56-bit words while the extended micro machine is

controlled by 80-bit words.

While (1) and (2) are fairly clear, (3) requires somewhat

more comment. Simply adding extra control store to the

basic 11/40 micro machine would not provide a very useful

general-purpose microprogrammed machine, since the 11/40

microcode is designed primarily for implementation of the

PDP-11 Instruction set and thus lacks generality. The WCS

adds to it the following features

a) A general Mask-Shift unit that allows the extraction of

any contiguous bit field from a 16-bit word, to be used

as an input to the PDP-11 Arithmetic Logic Unit (ALU)

b) A 16 word stack that allows micro-subroutining

capabilities, temporary storage, etc.

c) QuadruplicaLion of the address space (1024 vs 256), aside

from writability.

'

- .•*«•.- "<•

Page 11

d) Extended microbranch control, L,e

controlled by outout of Mask-shifter

N-wav branch i! rsg

The extra power provided by these facilities allowed us

to design an instruction set (see the APPENDIX A at the end

of this section) that is almost ideally suited for LISP

compiled code.

D
• *

ii

Memory Mapping

The 4M words address soace specified previously for

INTERLISP-11 clearly exceeds the amount of main memory (core

or RAM) one can reasonably expect will be available for

Intelliqent Terminal applications. This imolies that a way

must be found to map the IMTERLISP-ll address space into a

smaller real memory.

The existing mapping device for the PDP-11 (the so

called Memory Management Ootion) doesn't help us very much

since it is designed for the opposite application it maps a

small virtual address space into a larger amount of real

memory. This is good for multiuser applications since it

allows several user processes with small virtual spaces

(32k) to be resident in core simultaneously, but this is not

our case.

We considered the software approach} a page table that

lives in core, microprogramming for cutting together a real

.-..-,,

^mm mmiF ^PP ^^. , in . || „I -. ^r-r --»

Page 12

core address, and reloading of Memory Management Registers

(MMR's) for accessing th-t re?l address. This approach is

undesirable for several reasons: a) it is slow, b) the

microcoded instructions that we'd need would usurp WCS

memory space that could be used for other purposes, c) and

it would impose an extra burden to our programming tasks.

This last consideration is very important; in order to

minimize reloading of MMR's, which is very expensive, we

would have to be very clever in order to keep core "windowed

in" as much as possible. Clearly, a solution that allows us

to treat all core references equally is much preferred,

since it simplifies the programming effort, reduces

debugging, and speeds coding.

These reasons suggested a hardware/software trade-off:

a simple hardware pager, that we call Memory Mapping Device

(MMD), to map the 22-bit address space of INTERLISP-11 into

a 19 bits (512K) real core address.

The MMD works as follows. The 22-bit virtual address space

is visualized as consisting of 4K pages, each IK words long.

A 22-bit address specifies a page number (a page table

location) with its high order 12 bits, and a location within

the page with its low order 10 bits. The main component of

the MMD is a 4K by 16 bits random access memory that acts as

a page table, i.e. it maps a virtual page into a real

memory page. The 16-bit word at the specified location in

;■;• ;:..» Ill» I»1"1MW _ -. .. .-II. I. 1 ii

Paqe 13

the paqe table contains information on how to access the

paqe. If the page is in core, its real core address, aqe,

and status are specified as follows

AGE 5 bits - Clock reading at time page

was last referenced (Modulo 32) .

AGE is jammed in from a special

Aqe register every time the page is

referenced. The Age register is

incremented by software at

presettable clock intervals.

WMOD 1 bit - Tells whether or not the page

has been modified by a write access.

WPR 1 bit - Grants or refuses permission to

write on the page.

RCP 9 bits - real core page number

(most significant ^ bits of 19 bit

Real core address)

If the page is not in core, AGE is set to a special value,

and the Page Management module (see below) takes over.

The MMD hardware constructs a 19-bit address by

concatenating RCP with the least significant 10 bits from

the virtual address. An indication of the efficiency of

performance we exoect can be gleaned from the following

examole: To obtain CAR of a list (i.e. its first element)

I ■ lll»^^^ ——^.« , «. .» . u. ,„ ■--■ "'■- '' .' "-■ ■ ^i

Page 14

without the MMD would take 23 microseconds under the most

favorable circumstances. Of these, 14 microseconds are used

for software mapping one data reference; the other memory

references are assumed non-mapped (which implies that the

stack is windowed in core). With the MMD, this time is cut

to 10.8 microseconds, and special care to keep the stack,

windowed is not required.

Age Distribution Registers

The AGE field in each page table entry permits

efficient demand paging by making it possible to find the

least recently used pages. Such pages are good candidates

for removal from memory when one needs to make room for new

ones. Since the table is fairly large (4K words) a pure

software search for the least recently used pages will be

time consuming and inefficient; for this reason, we have

included a set of age distribution registers. These

registers provide a histogram of the page ages existing in

the table. In fact, there are 2 sets of age distribution

registers, one for pages that have been modified, the other

for unmodified pages. That is, for each possible

combination of AGE and WMOD there is an Age Distribution

register that contains the number of pages whose table

entries contain that combination. Thus, for examplv - to

find the n oldest pages one finds the corresponding ages by

examining at most 64 Age Distribution Registers, and then

- ^mmm^m^^mmmnFmm,^^^»i'» , . ..

Paqe 15

:.

D

uses these aqes as search keys in scanninq the map.

The complete sot of specifications for the MMD can be

found in Appendix B.

Software Implementation

The software implementation c INTERLISP is greatly

facilitated by the fact that a larqe fraction of the system

is written in LISP. The non-LISP parts of INTERLISP

represent

1) the way INTERLISP is inteqrated with its operational

environment,

2) the kernel, or irreducible parts that must be written in

machine language and on which the rest of the system is

buiIt.

In the followinq we discuss these issues in detail.

"

Operatinq Environment

This oackaqe provides the facilities of a simple

operatinq system, i.e.: the interface specific hardware

devices and the schedulinq and perfoi nance of core

allocation procedures. This portion or the system will be

small in accord with our desire to minimize the machine

dependence of the system.

»■■■i—"

--*l«i«^ .MH...

Page 16

Page management is the major component of the operating

environment. The page manager allocates real core for the 4

million word LISP virtual address space using the memory

mapping device for efficient demand paging. It uses 3

levels of storage: core, fixed head swapping disk, and bulk

storage disk. The page manager also provides user mode

access to the paging mechanism such as mapping file pages

into address space, and get/set access permission for a

page.

in addition, the operating environment supplies

primitive file operations (read/write-oharaoter, open/close

Ml.), terminal echo, padding, and interrupts, Interfaces to

IMP HA, auto dialer, real time clock, and scheduling of

background processes. The operating environment also has

the ability to run straight (non-LISP) PDP-11 processes such

as UNIX user programs.

The precise method for running UNIX user programs has

not yet been completely specified. An outline of our

intended approach is the following. The MHD has been

aesigned so that it is possible to dedicate any contiguous

32K segment of the virtual address space for a PDP-11 (user

mode, program by appropriate setting of the relocation field

in the mode register (see Appendix B, . Because It is

difficult, if not impossible, to demand page 11/40 code, the

required pages must be resident in real memory. This poses

pwiiappiiwwp^

■
Paqe 17

D
D

no particular orobiem

approximately .3 seconds

as 32K words can be swapped in

The ootions for interfacinq UNIX user programs to I/O

devices are:

a) Imolement a compatibility package to emulate UNIX system

calls

b) Modify the UNIX system calls in key programs (RITA and

RAND editor) so they will run in the INTERLISP operating

envi ronment.

c) Swap out LISP and swap in UNIX, turn the machine over to

UNIX and let UNIX do the work. Of course this requires

an addition to UNIX so it can "return" to LISP.

D

:;

Option C is probably unsatisfactory as it does not

provide anv convenient communication between LISP and UNIX

user programs. The choice between (a) and (b) depends

heavily on whether the INTERLISP environment can be made

similar to the UNIX environment without perverting the

requirements of the LISP environment. We have not yet

learned enough about UNIX to answer this.

LISP Kernel

The LISP Kernel includes the following modules:

1) storage allocation and garbage collection;

2) data storage and retrieval;

3) stack management;

Page 18

(a) function call/return;

(b) stack allocation and deallocation (note that multiple

environments make this a fairly complex process), and

(c) stack primitives - e.g. STKPOS, STKNTH;

4) Interpreter includes EVAL, APPLY, ENVEVAL, ENVAPPLY,

PROG, COND, etc.;

5) other data primitives - such as strings and hash arrays;

6) Basic I/O:

(a) interfaces to the operating environment for page

mapping, files, terminal, and other devices;

(b) terminal interrupt handlers, and

(c) atom hashing routine;

7) protection mechanisms for critical data such as file

directories - Includes both protection against accidental

destruction by user and protection against simultaneous

access by asynchronous processes (e.g. user and FTP

server) ;

8) compiled code interpreter.

The LISP kernel will be implemented in a judicious

combination of machine language and microcode. Although it

would be desirable to implement the entire kernel using

microcode, it clearly will not fit in the available writable

control store. Therefore, those portions of the kernel

*An exception occurs with garbage collection. There are a
small number of garbage collection primitives (those that
mark and chase pointers) that are executed thousand or
hundreds of thousands of times during a garbage collection.
In this case it is feasible to swap microcode.

■.■■■".■

Page 19

I 1

,

I

D
■:

i.

which are both frequently used and simple (short), such as

the compiled code Interpreter, function call/return and

portions of the stack allocation and deallocation code will

be written in microcode. As for the other portions, while

it is possible to swap microcode, the time to do the swap

would generally exceed the time to accomplish the desired

task with PDP-11 code instead.* What remains to be expla.-'ned

is how to interface smoothly the execution of straight

PDP-11 code with LISP microcode, in particular how we intend

to access the 4M word address space of the LISP environment

while executinq PDP-11 kernel code, and how to get along

with only 1300 words of WCS.

While it would bo possible for PDP-11 code to access

".he 4M word LISP address space by usinq Core Management

windows, this would be both slow and awkward. h cleverer

approach is to out to use some of the many PDP-11 opcodes

(Floatinq Point, Extended Instruction Set) preemoted by the

insertion of the WCS, and redefine them as new opcodes using

the WCS. All these automatically cause a transfer of

control to the writable control store, where one can decode

the instruction, perform the desired operation in microcode

(where access to the 4M word address space is faster and

simpler, see EXT reqister in HMD appendix), and then resume

PDP-11 code execution.

The reverse operation, i.e.: to transfer control fro m

W'S'SSs WWW mmm

Prqe 20

microcode to PDP-11 code will also be necessary. To see

this, just consider that the compiled code instruction set

contains 2048 miscellaneous operations (see Appendix A) .

While the most frequently executed ones will be microcoded,

it is clear that IK of WCS can not handle the whole set.

Therefore, most of thfZe relatively infrequent compiled code

instructions will have to result in calls to routines in

PDP-11 code. Another example is the set of operations

involved in a return from a function. In the "spaghetti

■rtack" (multiple environments) of INTERLISP there are two

types of function returns, essentially the simple return and

the return that requires an environment switch or

environment copy. The simple return can be accomplished

easily in microcode, while the hard return is probably both

long enough and infrequent enough to be undeserving of

microcode .

Both cases (the compiled code instructions and the hard

return) are handled in a manner similar to a PDP-11 trap.

That is, we save the state of the machine, where the state

includes whether we were in the compiled code interpreter or

in 11-code (executing a "new" instruction - e.g. RETURN);

we perform the desired operation in 11 code; and we res

the interrupted state.

ume

New LISP Code

SföSI
.mm^mamm mmm

mmmmmmmmi

Paqe 21

As wc noted before, a largo portion of INTERLISP-10 is

implemented in INTERLISP and may be transferred directly to

IMTERLTSP-11 without modification. However, there is still

a significant amount of additional LISP code that must be

written for the PDP-11, The reasons are various -- some

things are necessarily machine or imolementation dependent

such as the code generator for the compiler. Others are

machine dependent (in INTERLISP-10) for speed, such as the

arithmetic functions (SIN, COS, etc.), and READ and PRINT.

Some things are provided by TENEX such as the file system.

.

i:

Much of the required work can oroceed in parallel.

Those portions of the system which will be written in

INTERLISP can be written and debugged using INTERIISP-10.

CMU has provided an assembler and simulator for the

microcode that runs on TENEX. The simulator does not

capture all the idiosyncrasies of timing probler.s in the

microcode but does facilitate initial debugging. We have a

cross-net debugger for the POP-11 that runs under TENEX and

communicates with the 11 via the IMP interface. Since it

doesn't suffer from the space limitations of most PDP-11

debugging aids, it is much more useful.

Present Status

-■ Wl

"^ I.- , -"••— ■"" "■

Page 22

Hardware

Al! of the hardware, except the MMO, is installed and

working as of 1 May 1976. The MMD has been designed and

specified. Delivery is expected in early June. Following

delivery we will probably need to do some final debugging

(maximum 2-3 weeks).

Software

The major component of the operating environment, the

page manager, has been designed and partially written. In

the LISP kernel, the compilec code instruction set is

designed as well as most of the data sto-age formats and the

stack management.

Prognosis

We expect to have an INTERLISP-11 system that is useful

for testing and demonstrating some on-line help and tutorial

facilities for at least one of the tools that will

eventually be available under the IT. This we should be

able to do by the end of the contract period. However, some

components may have to be omitted due to lack of time. The

garbage collector, for example, is not essential for a

demonstration system since we can use LISP for a long time

without filling a 4M word address space.

-' ' ■■ ■»»Pi» t*J ■ •■ ■*- -- »■ ' m . . -— ■Pr; ...~*rr --«■^..■/.-»■.■■■'«■■i-»- r.

Page 2 3

Schedule

To the best of our crystal ball abilities, the

followinq appears to be a realizable schedule of

INTERLISP-11 development during the remainder of the

contract.

By the end of the 3rd quarter (30 June) We expect to

have

1) MMD delivered, debugged and accepted

2) An ooerating environment complete in its essentials

possibly omitting auto dialer

3) The compiled code interpreter, stack management, and some

of the data allocation, storaqe and retrieval.

4) The compiler done

5) Read, print, and file system desianed

n

4th auarter (30 September)

1) Complete kernel, integrate with operating environment

2) Complete READ, PRINT and file system

3) Comolete necessary LISP code (omit some arithmetic

functions for example)

5th quarter INTEGRATE AND DEBUG, AND USE

■ -

V "L"11 W. '.' H* ' » *,." UMS ^r. - T .—»T! ■.-»^■^- m» IL -. .,.mr- ■ —• .^——.. r"

Page 24

SECTION 3. "INTELLIGENT" ON-LINE ASSISTANTS AND TUTORS

Introduction

We envision the learning of a computer-based tool by a

computer-naive person as a multistage process. The first

stage is one where a basic conceptual framework is built-up.

It is here that the new user acquires the meaning and a

sense of the relative importance of key concepts that are

almost completely new to him. Learning at this stage can

take place effectively only if the new user is "taken by the

hand" and led through the maze of new knowledge by an expert

that presents to him carefully selected amounts of new

information and shields him from knowledge that cannot be

understood at that point. This "systematic teaching" phase

must be bolstered with examples, demonstrations ("let me

show you how to do this") and supervised practice. The

latter is a factor of fundamental importance: the new user

must be posed problems that can be solved with what he

should have learned so far, and his solutions and results be

scrutinized. If he makes an error, the nature of that error

must be explained, and some remedial material offered.

Once this basic conceptual framework has been

established, learning can proceed much more independently.

It is here that question answering pays off handsomely, not

only because the answers ^e frequently complete in

—IWIL :

••MURIRCTn 11. 1.1AI . .. »1,.. HJ. . —. m ■■'—..■. .A.

Paqe 25

themselves (they do not enqender new questions) but because

the no-lonqer-naive user knows what questions to ask.

In the rest of this section we describe our efforts in

creatinq an I^JLA'T
1
 for the Hermes messaqe system. We beqin

by describing our work in designing tutorials for systematic

teachinq, we continue with a description of our work in

question-answerinq, and we close with a description of the

control structure that holds the whole system toqether.

\:

Tutorials for systematic teaching

As alluded to in the Introduction to this Section,

while effective teachinq still depends on describing facts,

actions, purposes, procedures, etc. symbolically, the most

effective elements of the teachinq situation are the

ostensive ones, namely:

1) teachinq by letting the students do things by themselves

and helpinq them correct their mistakes.

2) teaching by way of examples

3) teachinq by demonstrating actions (the tutor typing

commands for the new user, for examole, when a

complicated new command is beinq introduced or when he is

unable to proceed)

A very useful way to proceed is to write somethinq like

a script for a series of lessons or, in other words, a

scenario for the form the INLAT adopts when in tutorial

——r.—, i ' -—~-.-— '

Page 26

mode. It is a way of exploring how to skillfully organize,

segment, present, and sequence knowledge about the subject

matter in a manner that results in easy and comfortable

learning.

When a new user asks the INLAT to teach him something

systematically, he is presented with an agenda-driven

sequence of tutorial units. The elements of these units

are:

a) delivering information

b) asking questions of the student

c) showing examples

d) demonstrating actions

e) requesting the student to perform tasks and exercises,

evaluating them, and making the appropriate comments to

the student

f) pausing to answer questions from the student

Elements a) and f) are always present.

The procedure is as follows. The INLAT presents

exposition, embedded in which is a series of tasks. Fairly

frequently, the system stops to ask whether there are any

questions. If the student has no questions the exposition

continues. If he has a question he types it, and when the

question has been answered, he can either keep asking

questions or allow the system to proceed with its tutorial

exposition.

D

'V u UJ(4.J .. , . pi iNi "■ j. •• • ••■m, \. - „j** iw '

Paqe 27

i«

□
i:

Whenever a task is proposed, the INLAT puts the new

user in touch with the tool being taught. After he is done

with the task, the system evaluates his performance of it.

If he has done the task correctly he will be praised and the

exposition will continue. If he has done the task

incorrectly his mistake will be pointed out to him, his work

space restored to its form before the task was initiated and

he will be asked to do it again. He may ask the system to

show him how to do it, or even ask the system to do it for

him if he is in real trouble.

Much thought was given to how much material would be

sufficient for allowing an individual co comfortably use

Hermes. We decided to focus our attention on several areas

including simple message processing (reading, filing,

deleting, listing) simple message sending (creating a

message, replying, forwarding), and several object creating

tasks (classifying mail by means of message sequences,

operating with different files, etc.) We felt that this

material is best delivered in small lessons of two or three

pages. In addition, we kept in mind that effective teaching

of a new system such as Hermes, requires repetition of key

material.

::

::

Methodology of building tutorial material

The methodology in building th^se lessons is in itself

-—•■•^^^■"1 « I I.I.. .. p — -...,„,,,.,. mm-vv'mm., .„*-■■-».. ^ ... ——

Page 28

interestiiig to those who would design such material. There

were many iterations in going from the initial draft to the

finished product. (We use the term "finished" very loosely,

for we are sure to find more weak areas in the tutorial as

testing continues.) We initially designed an outline of

topics that we wanted to cover, and then broke them down

into groups which later became lessons.

The real testing of this material came when we ran

subjects using the tutorial. Our method for doing this was

simple. The material was not on-line, but was handed to the

student in booklet form. The booklet contained groups of

text that included descriptions of tasks. At the places in

the booklet labelled "TASK" the student, already sitting

inside Hermes, performed the tasks on a specially designed

message file. We monitored the subject through a computer

link, two terminals talking to each other. When the student

had questions or needed assistance he typed a semi-colon and

his request. The "tutor" (a human at tnis point) then

responded to his request. (A description of the kind of

requests encountered follows.)

We were especially interested in the "bugs" exhibited

in the student's conception of Hermes' commands and actions.

For example, the delete command has a non-visible side

effect — it marks a message for deletion but does not

remove it from the message sequence until the user types

-. I.. • ' ..-_.-

Paqe 29

i:

■

- -

i: ili

expunge or leaves Hermes. To counter any confusion that the

student miqht have about deleting, these effects were made

explicit by telling the student exactly what happens when he

deletes a message. It is very important to make explicit

the hidden effects of a command, especially a powerful

command like delete that can cause exasperating results if

not understood completely. Another bug of this type is when

to follow a filter with a colon and when not to. There is a

rule that goes like this: if a filter is also a field name,

follow it by a colon; otherwise there should be no colon.

Although we did not explicitly state this rule in the text

(as maybe we should have), we did point out when a filter

must not have a colon. We are sure that hints like these

greatly reduce the amount of confusion inherent in learning

a new system. It is easy to get hung up, to manifest this

bug, and simple enough to include a sentence or two to

alleviate the oroblem before it becomes a point of real

confusion.

Sometimes these bugs were handled by including text to

warn the student of the pitfalls. Another way of dealing

with the problem was to anticipate it and rearrange the

tutorial. For example, the section on "panic buttons" was

moved to the front of the tutorial to allay the student's

fear of getting stuck in a problem situation. Forward and

Reply were moved to before the Compose command in the belief

that they are less complicated to learn and are really

 -»r , .»• «r- ---»»■>.

Page 30

simpler versions of Compose. The section on current objects

was put last because it is information that may be more than

the student wishes tp deal with.

The third way of dealing with "bugs" was to interact

with the Hermes project on system design. For example, the

version of Hermes we were dealing with in the testing of the

tutorial "id not make explicit the existence of partially

completed drafts, which users often forget about. Without

this information, the student may enter the draft state

again and begin creating what he thinks is a new message.

But in fact the old draft is still there and what he is

really doing is appending to each of the fields. The Hermes

project has handled the problem by making explicit (telling

the user) whether there is a draft sitting around that

hasn't been sent.

We have described a methodology for creating tutorial

material that includes adding hints to the document,

reordering material to anticipate difficulties, and making

suggestions for the modification of the system, Hermes,

itself.

The Tutorial as a Stand-alone Document

Another version of the tutorial only slightly different

from the one used in the tutoring session above is a

descriptive document that stands alone, apart from the

. — i' m. .■. ■. » -■!•»•> ■ •

,
Paqe 31

computer delivery. It excludes taaks which the student can

do and instead presents examples of the Hermes activities

explicitly. It is not "learning by doing", but "learning by

watching". It is a surprisingly robust document that people

have found helpful, so much so that it is being put out as

the user's introduction to Hermes distributed by the Hermes

project. It is included in this report as Appendix C.

|[]

ID

•-.-.-*

.

-»—'■■' ' .^m- ■■-!.> -~ »..*..-KJ s

Page 32

2^?5^i2D Answer ing

We are convinced that a really useful on-line

assistance facility for computer-naive users wil] have to be

based on an ability to understand questions and requests

posed in English. However, as is well known, Natural

Language Understanding by computer is an extremely difficult

problem area in Artificial Intelligence and we believe that

machine comprehension of completely free and unrestricted

English is still a distant goal. Therefore, our efforts in

this area must be necessarily qualified and delimited if we

are to produce a usable system within the period of

performance of the present contract.

The main realization that we have to come to terms with

is the limitedness of the range of English that we can make

our INLAT comprehend, and the breadth and depth of stored

knowledge we will have available to produce answers to

user's requests. Past experience with a previous INLAT-like

system, NLS-SCHOLAR, showed us very clearly how inadequate

even a relatively sophisticated system can be when subjected

to unrestricted inputs from users unaware of the system's

limitations.

To make habitable and useful a system that inherently

cannot be robust enough to withstand the onslaught of

incompletely specified, vague, ambiguous, and colloquially

expressed requests, we need at least: a) to teach the user

-'I 111 "• |i««."Ui-.' „. „Bi-llUl,!'«»"11111 - wmt -. ,»■•-

i.

I

.

::

Page 33

the kinds of requests the system can handle and those it

cannot handle, b) to incorporate facilities for guiding

users to formulate acceptable requests "on-the-fly" (for

example, guidance on what kinds of continuations would be

acceptable given the beginning of a question) and c) to

devise more elaborate partial comprehension facilities

(i.e.: the system mutters to itself "I don't know what he

means by ..., but within that general area I only know these

few facts. So I'll show him what I know and let him

choose") .

Collecting Sample Questions

The first task we undertook was to collect, classify

and analyze a large number of genuine questions about

Hermes. authenticity, rather than contrivedness of these

questions was ensured because we solicited them at the time

Hermes was being tentatively released, and because we

offered our services in trying to provide answers for them.

Thus, the questions reflected genuine doubts users were

having about a newly available tool.

One of the things that became apparent from the

beginning was that while a large number of these requests

appear answerable with state-of-the-art Natural Language

Understanding techniques, others are very hard to handle .

This shows that even a "restricted" domain, such as Hermes,

■■■HMMHS#«iHm),<wt

-««"••■P^^W^W^"^ I..,.! . , I — -i.—». .. ^,1W. w ,_,..

Page 34

is fraught with difficulties, both in the complex surface

structures and in the amount of implicit knowledge needed to

"understand" those requests.

Some appreciation of the difficulty in machine

understanding of these hard requests can be gained via a few

specimens in our collection:

1) "What if I instead of typing a part of the word print

followed by an escape I just typed part of the word

followed by a space and the message #?"

2) "If I use the "copies" subcommand of the "reply" command,

are the addresses on the cc: and bcc: lists kept on them

or are they moved into the to: list?"

3) "Why don't the messages start with 1,2,3...?"

(He has just seen an initial survey which only prints

messages marked recent and unseen.)

4) "What do I do to read let's say the last message without

reading every message in between?"

(He has just learned about LF and but has not been told

about the Print command.)

5) "Now what happens if I want to see a preceding message,

(not necessarily the one directly before but let's say

16) even if you've already bypassed the message?"

(A complex paraphrase of the preceding request.)

One can see tnat a system able to understand these questions

would have to:

» . , . *» »r- -<*

Page 35

■

D

I

m m

■■■. .-

a) be tolerant of dubious Enqlish constructs, as in 1;

b) be able to model the situation described in order to

provide an answer by just trying it out, as in 2;

c) be able to make the correct anaphoric references ("the

messages") and have an internal model of the user's

knowledge to provide the pertinent explanation, as in 3,

4, and 5 .

These examples also illustrate how imoortant it is to train

the user how to ask Questions so that the system Plight have

a chance of understanding them.

On the brighter side of the picture, we realized there

were a large number of Questions that arise naturally and

for which we could successfully provide answers,

questions include those about:

1) procedures (How do I do something)

(What does a certain command do)

(What does something mean)

(What command performs a certain

action)

(What's the difference between ..)

(Can I do something)

(Does a certain action have a certain

effect)

These

2) Purposes

3) Definitions

4) Instruments

5) Differences

6) Possibility

, „:.™._, ,.!...._ immnww, -

Page 36

Analyzing the sample questions - Vocabulary, Syntax, and
Semant ics.

In order to characterize the questions we could

feasibly answer, we performed an analysis of the collected

reauests. In general, there are two problems when dealing

with a corpus of utterances that map into a finite knowledge

space — a so-called "closed world." Basically, there are

many ways of saying the same thing, and there are many

distinct things to talk about. Let's be more specific.

The first problem is represented by the high number of

utterances to which we normally attribute the same meaning.

This requires understanding how to extract that single deep

structure representing the meaning, from the many surface

forms in which that meaning can be expressed.

The second oroblem is what are the distinct meanings

contained in the corpus of utterances, and by extension and

generalization, what are all the possible distinct meanings

contained in the knowledge space. This requires designing a

deep representation for those meanings, in terms of

factoring them into a fewer number of "primitive" meanings.

To handle efficiently a large number of distinct meanings we

want to "factor" as much as possible - we want to create a

class of articulated structures in which each part can be

one of a small number of possibilities, and in which the

interpretation of the whole is a simple function of the

interpretation of the parts and their relationships. A

:

,

~ ~^- —-TT- ,. - — -»■.■. am.wMUi.iimm mi ■■ —

Page 37

Li

natural representation havinq most of these desired

characteristics is the Semantic Network, that will be
■

described shortly.

Our first attempt at analyzing the collected requests

reflected the general approach delineate^ above. We

classified those requests in terms of the surface main verb

and the classes of nouns involved, and in terms of what

single Hermes command they referred to.

Parsing.

To handle a large number of distinct surface structures

having a fewer number of distinct meanings, the first step

is parsinq. Tiis creates a standardized syntactic structure

in which th* meaninqful elements of the surface structure

are arranqed into a smaller set of canonical positions.

Thus, a first stage of the factorization process alluded to

before is accomplished: some very different phrasings having

equivalent meanings are reduced to parsed structures with

only small localized differences.

To this end, we investigated several complex parsinq

systems, includinq the Lunar System and the General

Syntactic Processor (GSP). Both of these parsers are

syntax-driven and produce a parse that has much of the

structure of a Case analysis. An example of the parse of

the same sentence from both LUNAR and GSP is shown next.

/--•

••'«■..' iv :-* • •- » . -— -, . .>.*l- ■■-..». ■.-.■.jm'—li-l- ... -— —

Page 38

(PRINT THE CURRENT MESSAGE AT THE LINEPRINTER)
* **

PARSINGS:
S IMP

NP PRO YOU
AUX TNS PRESENT
VP V PRINT

NP DET THE
ADJ CURRENT
N MESSAGE
NU SG
PP PREP AT

NP DET THE,
N LINEPRINTER
NU SG

41*-
** *

Par
1:

2:
3:

PRINT THE CURRENT MESSAGE AT THE LPT;

se 1:
[LABEL « S
MOOD = IMP
SUBJ = [LABEL

HEAD =

4: FVERB = [LABEL
TENSE
ROOT

5: HEAD = [LABEL
UNTENS
PNCODE
TENSE
ROOT =

6: OBJ = [LABEL =

= NP
[LABEL = PRO
ROOT - YOU]]

- V
= PRESENT

= WILL-MODAL]
» V
ED = T
- X3SG

- PRESENT
PRINT]
NP

7: DET « -■ [LABEL = ART
ROOT = THE]

3: ADJS = ([LABEL = ADJ
ROOT = CURRENT])

9: HEAD = [LABEL = N
NUMBER = SG ^
ROOT = MESSAGE]

10: MODS = ([LABEL = PP
11: PREP = [LABEL = PREP

ROOT = AT]

We can see that although GSP makes explicit what fills

each case frame, Lunar is designed to allow for this also;

—v-»'«^-:!^.. . tu- ■ ■ -W ^ . ~.W'****■*. t^. ,„. ■

I »

if

Page 39

the output printinq routines could be modified to mimic

GSP's behavior. The final decision of which parser to use

has been delayed to allow for the introduction of a more

robust GSP parser which should be available in the very near

future.

Semantic Interpretation.

We then explored what it would take to extract the

meaning (semantic structure) of a request qiven its parse.

Since the final representation was expected to be equivalent

to a single Hermes command, and there seemed to be a rough

relation between the main surface verb (head) and the

underlying command, we investigated the collected "procedure

requests" with this in mind. The first step was to break

them down by the surface verb to see the kinds of Cases the

verbs can take and how the procedures can differ when taking

into account the contents of these Cases. This is one

example:

The verb COPY

Sentence

Copy a message to a file.
Copy a message to the lineprinter. LIST
Copy a filter into a named f.lter. COPY
Copy a message into the draft.
Copy a message into a field. f

relevant Hermes command

FILE

FORWARD
CTRL-B, ADD-FILE

In all but one example, the Object Case is message, but the

Hermes command that is being requested is dependent on the

-- ' ' ■'-■-'■■iqw -I,..,. »■-.li--. i MI.... -- - .-"

Paqe 40

contents of the destination Case (file, lineprinter, filter,

draft, field) .

The next breakdown was the grouping of sentences by the

Hermes command that is being requested. With that breakdown

we could analyze all the various surface verb and Case

contents that can refer to a single Hermes command. For

example, the command List can have a variety of surface

reoresentations:

I JHj
m

The Hermes command LIST

Cet a listing of the message.
List the message.
Output a message to the lineprinter.
Copy a message to the lineprinter.

As we investigated this relationship further we found

that there were many simple syntactic structures in

plausible sentences L it could not be mapped to parts of a

single Hermes command. In other words, the user's natural

language concepts correspond to something larger than a

single command. This led to the idea of a conceptual

command - a conceptually Military action that the user

desires Hermes to take. The conceptual commands fall into

natural classes whose elements differ only in the objects to

be affected or the details of the operations to be

performed. Such classes of conceptual commands do not

always map to single Hermes commands with varying

parameters. In general they map to a "MACRO-command" a

 • - •■ ■ «53 ——' —«#««^ rr;-:.,-

Paqe 41

-

I Ü

* .4»

sequence of (optional) Hermes commands whose arguments can

be filled in to provide a Hermes procedure for any example

of the class of conceptual procedures.

As an example of such a class of conceptual commands

consider the class of "display Hermes structure" commands.

These commands all involve showing the user (by producing

character string output on some file., including the users

terminal, the line printer or a disk file) some portion of a

specified collection of Hermes objects. To specify a

particular display command we must specify several Cases

(parameter- of the class of conceptual display commands.)

Some examples of Cases are:

Class - the type of object to be displayed (message

sequence, switch, command, description);

Restriction - characteristics defining those objects of

class which are to be displayed (e.g. filters like FROM:

AIGHES, names like DELETE SWITCH);

Output template - description of a part of each object

which is to be displayed, as well as formatting

information (e.g. fields of message, default value or

current value for a switch);

Destination: file to send output to

Given the contents of these cases, we can choose the

relevant conceptual command from the class and fill in

the arguments of its related MACRO-command. With the

.......i . — ..—_-v_ .

Page 42

filled-in cases we can also construct procedures that

look at the values of the cases and manipulate them to

achieve an understandinq of the user's request.

We will now follow the interpretation of a request

"Tell me the character count of messages 41 through 45".

The cases we will try to fill out are:

Class
Restr iction
Template
Destination

I. C^ass: Class is the object we are concerned with. The

class is "message".

II. Restriction: Made on the class. It is "message number

between 41 and 45".

III. Output Template: What part of the object is to be

displayed. It is "character count".

IV. Destination: We assume it is the terminal, TTY:.

To go from these conceptual cases to arguments of a

MACRO-command we need several procedures including a

template maker, a sequence maker, and a display command

maker. We indicate below some of the decisions to be made

in each.

Template maker: Is there a template that already exists that

does this? Yes, there in Ptemplate and Stemplate. Which is

better? Stemplate because it contains fewer other things.

Would it be better to create a new template that only does

^jZp-j———.—. . p. . i in ■

Paqo 43

this one thing — give a character count? Yes.

>CREATE TEMPLATE TEMP
>>LINE-INSERT END CHAR-COUNT
>>DONE
>

:

Sequence maker: Creates the correct message sequence given

the Class and the Restriction. In this example, 41 through

45, or 41:45.

Command maker: Should we choose the most specific or the

most general command to perform this operation? The most

general is Transcribe, the most specific. Print.

Tell me <msg/part> of <msg/seq> =>

Print <nnsg/seq> <template> <destination> =>

Print (messages) 41:45 (using filter) temp (on file) tty:

In summary, we have sketched out how we are attacking

the auestion-answering problem. A break down and analysis

of requests has begun. We now see as the next step working

on a procedure for using the cases once they are filled ina

In addition this next quarter we will settle on a parser and

oroceed to exercise it.

Semantic Network

In order to answer questions about a program like

Hermes, an on-line assistant needs to have readily available

i .

Page 44

a store of factual information about the program. Given

that the system is a large and complex as it is, it becomes

imperative to make a judicious choice of both the nature of

the information to be stored, and its representational

format. In addition, any data structure which is expected

to represent such potentially sophisticated information must

be designed with careful attention paid to the procedures

that will access it. No matter how elegantly the knowledge

is represented, it is not useful unless it cah'be fo-und and

applied when needed.

D

Our first attempt has been to encode basic descriptive

(static) knowledge about the internal structure of the

Hermes program. Such information is the kind necessary to

answer simple factual queries about Hermes commands and

objects. For example, questions like:

1) "What are the arguments to the PRINT command?"
2) "What are the parts of a DRAFT message?"
3) "What commands operate on messages?"
4) "What is the difference between the SURVEY and SUMMARIZE
commands?"

would be answered by a system whose knowledge base includes

a straightforward record of the structure of Hermes

commands, the parts of Hermes objects, and the objects

manipulated by commands.

Since questions about such things can be phrased in

many ways, and make use of many different arrangements of

concepts, it makes sense to represent the information in

r ^-■»■■■J.VM-m.W , .- . .'■, f- 1 ll:.,J -■ STr

Page 4C

^

terms removed from those of natural language. To this end,

we have chosen to represent a description of Hermes based on

the semantic network formalism. The main value accrued from

a network structure like the one we are using is the ability

to store information about many objects in one place

(usually called a "concept node") . Since one node

represents an entire class of things, an assertion stored at

the node is implicitly made about each individual membe-: of

the class.

We have derived a discipline for creating the Hermes

Net that diverges from standard semantic net building. For

our links, we use only a small set of primitively-defined

link types, which explicitly reflect the basic

epistemological operations of the network representation,

Thus, any conceptual relation (one related to the Hermes

world) is build out of primitive links, and is never implied

to be primitive. While the extra "layer" of structure makes

the network somewhat more difficult for a human to read, it

avoids the ambiguities and type confusions invaria^' found

when the underlying operations are glossed over.

For example, here is how we would build a node for

COMMAND:

-"■" ■ >-' '"W'iJ— • HJ J i , • .. —^.n .«.if . 1" HH ■- .,««.

Page 46

0PTtQNf4~ % f'i&tecr)

tffecr*-) ^*\^B^^£iM/sf^i\i v^^;£/(^TtüaT

The relation DATTRS always points to a description of a

part or attribute of the thing being defined. Here, we see

that node A defines the "ARGUMENTS" part of a command. The

MODALITY states that command-arguments are optional; if

there are any, there can be more than one, as indicated by

NUMBER pointing to ">1". The ROLE link specifies the

functional role of this part of a command in relation to the

command as a whole. If a concept node like COMMAND is

thought of as a case frame, the xxx specify the case

definitions. ROLE names the particular case. Finally,

VALUE/RESTRICTION points to another concept that defines the

class of values legal as fillers for the case.

We have represented many of the Hermes commands and

objects in this manner. We will not go into the

representation in any more detail here but merely point out

Er. .^mmm^ m . ..ji'» i:.nji.,j ,. .-^—— -*r-r .„. ^ v -•- -i... ->, w _ • ■.—"

Page 47

.

. I

that, since the underlying set of relations used in our net

is fixed and well-defined, the procedures we build will be

able to operate consistently. This is the main reason for

breaking up the basic operations into individual links.

Notice in the figure that Hermes COMMANDS have a part

called a FUNCTION. We have found that, while a network that

straight forwardly reflects the structure c the program is

necessary to answer simple factual questions, it is not

adequate to handle even the simplest of functional

questions, e.g.

1) "How do I read a message?"
2) "What is the second argument of PRINT for?
3) "What are COMPOSE-TEMPLATES used for?"

Such questions require a functional view of the Hermes

world. We have begun to represent PURPOSES in the same kind

of network notation that we are using for the commands and

objects. This net takes notions like CREATING, DESTROYING,

CHANGING, MOVING, etc., which are the ways the user thinks

of what Hermes does, and provides a structured

classification so that relevant operations are easily

accessible from related ones. We believe that this type of

structuring will facilitate the inferences necessary to go

from the natural language phrasing of a functional question

to a well-defined conceptual structure for the qu.ry.

It has also become clear that "functions" do rot map

— UW ^i^WPWll'lilW ... -. .JUi"1 P"l"l , ...MM« ,- ^ ^^ „_ ^ ■■■■ ■

Pagp 48

one-to-one onto the commands and objects. We are studying a

mechanism for interfacing the two networks, and believe that

this may lead to a powerful tool for integrating different

models of the same factual world.

Current Control Structure

The various modules that compose the INLAT (Natural

Language Under Stander, Tutor, Hermes, Question Answerer,

etc.) are held together by a Control Structure presided over

by a monitor. Our notions in this regard are still evolving

and the Monitor we shall describe next represents only our

current approach. As such, it may very well change in the

next few months.

The Monitor oversees all dialog between the user and

the system. It is its job to read inputs from the user,

analyze the input to extract contextual information, examine

it for 'level of sophistication' and both syntactic and

semantic error checks, record each piece of dialog on a

history list {the:e are several history lists — see

subsequent discussion), and decide how to handle the input,

i.e., which module to pass it to. Currently, the monitor

attempts to parse the input as a Hermes command, and if it

succeeds, it passes the command direct.1 y to Hermes;

otherwise it hands it to to the Natural Language

Understander to be parsed and then to the QA

vmmmi immm.ii'tm***""1 •• ■»—-'

;" -.:-::--y

Page 49

(Question-Answerer) to be processed. Also, the monitor

takes care of all interfacing between the user and Hermes,

protecting each from the other. It sets up necessary

network links, creates a copy of the user s mailbox for its

own internal use, and maintains a user profile (which

includes the Hermes profile and other information). In

summary, the monitor is the central component that gets

everything going and directs the whole operation.

The monitor also will have to 'evaluate' what the user

is doing in relation to some model or notion of what the

user is trying to accomplish. As a simple (and possibly

unrepresentative) example of how the monitor watches over,

assume the user is in an editor doing subcommands and wishes

to abort a subcommand but mistakenly types "E (taking him

out of the editor). He then attempts to redo the subcommand

not realizing he is at the top level. The monitor should

inform the user what happened and get him back where he was

in the editor.

I

 "The-mo-nitor...takes care also of correcting mistakes such

as typing 1*3 instead of the intended messäge--GpeciXication

1:3, or of understanding what the user means when he types

'Print template' instead of 'Show template' or 'Send switch'

instead of 'Export switch'.

Thus far, there have been two versions of the Monitor

constructed. The first was a 'quick & dirty' version that

, r-^-,. ,,-,„.., , .. „ . . , .. .: m, . ,_»...■■ Miiil IWU . .,

Page 50

didn't do much more than establish the network couplings, do

all interfacing, i/o and interrupt handling, maintain a

simple profile, and delegate inputs to either NLF and QA, or

to Hermes. The main problem with it was its mode ot

operation: having to constantly send bits of information

across the network and then wait for a response before it

could continue. This made real-time operation impractical

due to the long delays involved. This version was abandoned

over a month ago.

The current version is not yet complete, but is close

to being operational. This version does not send anything

across the net until it nas ga»-hered a complete Hermes

command to be executed, i.e., not until it is absolutely

essential — no net delays are incurred that can be avoided.

Also, the current version does a good deal more than the

previous, as it is not a 'quick & dirty' monitor, but rather

more along the lines of what the final one shou . .ook like.

As well as doing all of the nitty-gritty work necessary

for the Hermes interface over the net, the monitor does a

certain amount of syntactic error coirection, maintains

-ra-t-her- complete and useful history lists, and attempts to

constiuct a good internal representation of user inputs.

The monitor operates to a large degree by emulating Hermes.

It contains a complete parser for Hermes Commands, a partial

simulation of Hermes, and also a simulator for certain parts

—«—"^^ I •*: »' ■ ■

Page 51

of Tenex. (The Tenex simulation is used principally for

file recognition and confirmation, which Hermes passes to

Tenex to read, but also for various utility commands such as

JOBSTAT, OFD, DIRECTORY, etc.)

I

Among the other things that it is doing, the monitor is

maintaining a complete history of everything that occurs

during the session. This is done on a number of different

'history lists' (not LISPX history lists). Each command

line (a question is considered a 'command') begins with a

line number and prompt character. This line number is then

the index for everything that is recorded on the history

lists up to the next command line. The things that would go

on the list would include: the raw line read from the user;

any modifications or interpretations or parsings of that

line; any Inlat dialog with Hermes (invisible to user)

needed to process the line; the final Hermes command issued;

and the corresponding response, if any. In addition to

these lists, there are a number of 'context' variables that

are maintained. These will be the key to extracting an

interpretation that can be used by the Inlat sv^tem. The

idea is, as of this moment, that a chain of 'history trees'

will be kept. The root of each tree is on the chain in

sequential chronological order. The tree growing off of

each root then represents all interactions and subtasks and

KW r.r^w_*m<%^.-.*ma '■• tm. *

Paqe 52

subgoals that were used to accomplish the task initiated by

the root. This corresponds to the subcommand structure

within Hermes itself. Although we ^nnot yet be too

specific about these trees, th , will contain all

information pertinent to a given task -- the only question

is what form it will have, i.e. how it will be compressed

and encoded.

- ■ r

APPENDIX A - SPECIFICATIONS

Page 53

1 • INSTRUCTION SET

The LISP compiler will produce code in the instruction set
described below. The code is interpreted (run) by the micro-code.

In the following description TOS means top of stack; the quantity
on the top of the stack is referenced, S as a source means the
quantity on'the top of the stack is popped. S as a destination means
the result is pushed on the stack.

I

Group 1

4 bit op 1 bit sub--op 3 bit sourcetyp 8 bit offset.

source types are:

STACK - temporary value in current frame extension. Offset is a
positive quantity representing a negative offset from the
current stack pointer.

LIT - literal of the (compiled) function now running. Offset is
a positive offset from the current function literal pointer.

LOCAL - local variable in the current basic frame. Offset is
positive from current basic frame pointer.

SPEC - specvar reference. An indirect reference to a value cell.
In compiled functions the value cell pointers are in the
literal area, and in interpreted functions the value cell
pointers are in the basic frame. In either case the
so-called literal pointer is the base for specvar
references. The offset is positive.

SYSTEM CONSTANT - Constants that are referenced frequently, such
as T and NIL, are stored in a system literal table. The
offset is positive from the beginning of the system literal
table.

IMMEDIATE - immediate small numbers In the range -63 to +64. The
offset is the number minus 63.

op sub-op
00 0 PUSH E->S

1 RET return (E)
01,02 unused (possibly IF TRUE, RET and IF FALSE, RET)

it

Group 2

4 bit op 2 bit sub-op 2 bit sourcetyp 8 bit offset

w _ mm ***MI~ " " "-» ■ . — »> W- l— ~

source types are:
STACK, LIT, LOCAL, SPEC

Page 54

op sub- -op
03 0 CAR CAR(E)->S

1 RCAR (return(CAR

2 CDR CDR(E)->S

3 RCDR etc.

04 0
1
2
3

CAAR
RCAAR
CADR
RCADR

05 0
1
2
3

CDAR
RCDAR
CDDR
RCDDk

E))

Group 3

4 bit op 2 bit subop 2 bit source t'

op su bop
06 0 TOS TOS->E

1 POP S->E
2 PCAR CAR(S)->E

3 PCDR CDR(S)->E

07 0 SCDR CDR{E)->E
1 SCDDR CDDR(E)->E

2 ADD1 E+1->E

3 SUBl E-1->E

Group 4 - arith,

4 bit op 2 bit subop 2 bit source type 8 bit offset

op su bop
10 0

1
2
3

ADD
SUB
MUL
DIV

TOS+E->TOS

n 0 REM
1 EQ

set
COMPARE TOS
indicators.

2 >

3 <

with E and POP

Note that the quantity on the top of the stack can be either
a pointer Va number (a boxed number) or a tagged unboxed
number. The result can be stored on the stack as a tagged

— -——■—- ^-. . .^mrt .*»■. ..-i......

Page 55

unboxed number.

Group 5 - type tests

4 bit op 2 bit subop 2 bit source type 8 bit offset

i

OP subop
12 0 LISTP t

1 ATOM
2 LITATOM
3 NUM:?P;RP

13 0 FIXP
1 3TRINGP
2 ARRAYP
3 STACKP

Group 6 - branch

4 bit op 2 bit subop 10 bit offset

Offset is 9 bits + sign, 0 implies long branch where
15 bit offset is in the following word.

I

i.

OD

14

15

op 15

subop
0
1
2
3
0
1
2

BRT branch if indicator true
3RF branch if indicator false
unused
BR unconditional branch
BNIL branch if TOS=NIL and POP
BNN branch if TOS NOT NIL and POP
NBNIL if TOS=NIL, branch and don't pop; if
TOS NOT NIL, don't branch and do pop.

3 NBNN if TOS NOT N..L, branch and don't pop;
if TOS=NIL, don't branch and do pop.

unused

Group 7 - literal references

8 bit OD 8 bit offset

::

op
1700 C^LL
1704 DCALL
1710 LCALL
1714 DLCALL
1720 BIND

call function, literal is #args,, fnname
call function, discard value
linked call to function
linked call, discard value
used for prog's and open lambdas that
make frames

}t^^&a^^¥^:Miimemii«ttm^^.'^-
.-■■':..■ ., -.- :■■■..-<>■.■.:.-■■■■ ■■",.:-■■■

 . I' — w^rnms—. i ^ u i. i >■ _—,—^ ..-^... wf'Mm.,-. .«. ——

Page 56

17 24 TYPTST

1730-1734 unused

test type of TOS, arg. is type number
(immediate)

Group 8 - miscellaneous

16 bit op, 174000-177777
2048 miscellaneous operations, args. if any, are on the

stack.
For example:

CONS
MEMB
ASSOC
ELT
SETA
RPLACA
RPLACD
DRPLACA
DRPLACD
DPOP
NLGO
NLRET
APPLY
EVAL
APPLY*

(discard value)
it

(pop and discard)
non-local GO in PROG
return from PROG when inside an open LAMBDA

— awivs^T-,:. - 1 ..

Paqe 57

II. STACK FORMAT

The stack is allocated in a fixed 64K segment limiting
stack pointers to 15 bits.

Frame Extension

[FLGS][USE]
SIZE or END
BLINK
ALINK
CLINK
RETURN

16 flags are easy/hard, active/inactive
16
16
16
16
32

TEMPORARIES

Basic Frame

BINDINGS

32 bits each

32 bits each

:

BLINK->[FLGS][CXT] 16 figs are active/inactive
[FRAME SIZE][#ARGS] 16
FRAME NAME 2 4
FEF or VCELLS 24

Holes

-1 16 HOLE FLAG
SIZE or END 16
LAST HOLE 16
NEXT HOLE 16

Frame extension is all obvious. Tems are 22 bit
pointers. High order 10 bits can be used for magic markers
such as:

□

0) POINTER
1) 22 bit integer
2) UNBOXED stack pointer
3) or anything else that can be stored in 22 bits
4) ALL ONES RESERVED (see Holes)

The basic frame overhead follows the bindings so that
bindings can be stacked directly without either moving them
to build the frame or having a special operation to begin a
function call by skipping some stack locations. If the
function is compiled, the t-igh order 10 bits of a binding

... -- .. w" . —

Page

pe
pe

Stack holes are chained both frontwards and backwards,
rmUting quick searches for available ho es and also
rmitting the removal of any hole from the list.

be When a frame is about to be run, it is desirable to
.hiP to check whether a stack hole immediately follows the
S LsKn. Thus a hole mark must be distinguishable rom
any binding, and from a frame extension header This is
^rcomolished by prohibiting the value -1 in the high ^ °ics
of a binding, and -1 as the value of USE. To remove a hole,

H, from the chain,

(NEXT(LAST H)) <- (NEXT H)
(LAST(NEXT H)) <- (LAST H)

Hole merging is often useful and is accomplished as

follows:

IF X+(LEN X) - (NEXT X) then

(LEN X) <- (LEN X) + (LEN(NEXT X))
(LAST(NEXT X)) <- X
(NEXT X) <- (NEXT(NEXT X))

chain
above

*NOTE
that

Holes that are smaller than 4 words are "f in ^
These can only be used if required by the frame

* If they eventually get merged into adjacent holes.

isinq an FEE contained in the compiled code means
'J'!U- • —- function variable must be

or

an FEF containedin
CHANGENAME of a compiled

illegal.
Size Comparison

Extension overhead
Basic Frame overhead

compiled bindings
interp. bindings

Typical 3 args, compiled
3 args, interpreted

PDP-11
112 bits
b0
32
48

288
336

bits
bits

PDP-10
180 bits
36
36
36

324
324

p- -—™ —^- ■"« -i, — .. .- .. .—-^„■J I. ' ",il^., . .M^„,.,,_»^, v_ ^

Paqe 59

1)
2)
3)
4)
5)

6)

III. LIST STORAGE

A CONS cell can occupy one, two or three 16 bit words. Full
pointers are 22 bits. The flavors of CONS cell are:

CAR special, CDR special - stored in
CAR special, CDR lonq - stored in 16
CDR special, CAR lonq - stored in 32
Both lonq - stored in 43 bits
INVIZ1 - invisible pointer short -
or RPLACD'd and the
The real cons is offset
table.
INVIZ2 - 2 word invisible otr

16 bits
bits
bits

the cell has been RPLACA'd
new value would not fit in a 1 word CONS,
from here. 0 means it is in a hash

FLG TYPE
000 both special
001 CDR lonq

010 CAR lonq
011 Both lonq

100 INVIZ1
101 INVIZ2

FORMAT
(3 bit flq] [7 bit car] [6
[3 bit flql [7 bit car] [6
[16 low bits full cdr]
[3 bit flq][U][6 hi bits
[3 bit flq][U][6 hi bits
[16 low bits CAR]
[16 low bits CDR]
[3 bit flq][13 bit offset
[3 bit flq][UUUUUUÜ][6 hi
[16 low bits actual addr]

bit cdr]
hi bits full cdr

full car][6 bit cdr
car][6 hi bits cdr]

bits actual addr]

CDR s are
list

encoded as

from this location by

[U...] denotes unused bits. 7 bit CAR's are encoded as follows:
bit 6 - 0 - remaininq 6 bits 0 CAR is NIL, otherwise CAR J> a
offset from this location by +/- 31 words. 6 bit
follows:
3 - CDR is NIL, otheiwise CDR is a list offset
+/- 31 words. INVIZ1 is used, when the oriqinal CONS is one word lonq,
the new cons will not fit in one word, and there is a free slot big
enouqh within an offset of +/- 4000 words. One unique value is
reserved to denote that the real cell is contained in a hash table.
INVIZ2 is used when the oriqinal CONS was 2 words and the new CONS
requires 3 words. Then the INVIZ2 pointer is the full 22 bit address
of the actual CONS cell. Usinq the followinq data obtained by GREEN
and CLARK we can compute the averaqe number of bits required by a list

cell.
29% of CAR
72% of CDR
25% of CDR
3% of
11% of

s are lists. Of
s are lists. Of
's are NIL.

AR's are NIL.
CAR's are numbers 0-15.

these 70% are within
these 38% are within

+ /-
+ /-

31.
31.

^ssuminq Thus, P(0)=.30, P(l)=.04, P(2)=.58, P(3)=.0B.
pointers the averaqe number of bits per list cell is then it

no INVIZ
, 5 bits.

'"-«i» I,IL1JHJ .'. —— mem •mm... n* ; «r 1

Page

LIST ALLOCATION

60

set in the word.
word in chunk"
we will take one
indicates that

To allocate list cells we will need a free list of words, one
free list per oage containing relative addresses within the page (10
bits). If a word on the free list has only one free word following,
then a "next to last word in chunk" flag will be
Similarly the last word in a chunk will have a "last
flag set. When allocating space for a new list cell,
two or three words as needed. If the free pointer
there is not enough space in the chunk, then just waste the words at
the end of the chunk and step the free pointer to a chunk that is big
enough. (Note that there is a bit of iteration in the above process
but basically simple). As we will probably linearize lists
occasionally, the "small amount of waste should not matter very much.
Also, given there are 2 unused CONS types, we could use one of the
types to mark lonely 1 to 2 word holes. Then the holes could be used
by RPLACA's to preceding cells.

w^1 «'■■■ii-ii-Jti.jij ~-~--^m -—^ »III ■ II1>.-V:. ...

Page 61

APPENDIX B

PDP-11 MEMOHY MAPPING DEVICE

The PDP-11 Memory Mapping Device, to be referred to as

MMD will accept Unibus memory requests from a 'PDP-II

processor or other bus master and generate paged memory

requests on a second Unibus connected to all system memory.

It shall contain a high speed ^K by 16 bit memory to hold

the real core addresses of all virtual memory pages. The

device will have control registers that will store the

following functions: (1) relocation, (2) byte/word

addressing, (3) disabling of paging and EXT registers, (4)

write protection, (5) word modification detection, (6) age

of pages, (7) distribution of ages, and (8) invalid page

status information. The diagran below shows the location of

the MMD in a system.

MMD

Control Rog-126K

Page Mem.-120-124K
\ " I r

PDP-11 DEC

Mem.

CM I

Mem.
1

r-L
(I/O

».
I /

I/O

I Control Registers

1.1 Mode Registers (4), 764200, 764202, 764204, 764206

. . XXX AMD STS PTE
WRD
ADR

EXT
ENA

X REL

15 13 12 11 10 7 6

,.

 - * "- —1—— . - , ,. .._»__• •■• m. .. .^■^-■■-■W»^^^I.».MI, ^. ~--^r-

Page 62

There are four mode registers which allow 'i different

sets of parameters in using the MMD, Bits <17:16> of the

FDP-11 bus address select the mode register to be used.

This register is read/write. The definition of the register

bits is below.

1.1.1 REL - Relocation. - This 7 bit quantity is

added (or)OR'ed) to the high-order address bits for

use in addressing the page table memory.

1.1.2 EXT ENA - Address Extension Enable - This

bit when false causes the EXT register to be treated

as if its contents were zero. When true the EXT

register (combined with REL) is the high order part

of the virtual address.

1.1.3 WRD ADR - Word Addressing - When true, word

addressing is enabled (address is shifted left 1).

'.1.4 PTE - Page Table Enable - When true, the page

table memory is used; when false, the page table

memory is bypassed.

1.1.5 STS - Protect Trap Status - When ;rue will

not allow modification of information retained

during trap.

-—-"■•— -•turn■.^-^.—■) iiin."i'i«—i...... .

r

n

PaRe 63

1.1.6 AMD - Age Modification Disable - When true,

no change occurs in the age section of the page

table memory on memory references.

1.1.7 XXX - Non-existent

1.2 EXT Register (1), 76^210

This 6 bit register is clocked from external,

non-Unibus hardware and may be read or written by the

processor

XXX EXT I

15 6 5

1.3 Age Register (1), 764212

This 5 bit register can both be read and written by the

processor. Its contents are entered into the page

table memory during -riemory references unless inhibited

by AMD true or PTE false.

XXX AGE

15 5 4

-[.H Age Distribution Registers (64), 764000 - 764176

These 12 bit registers indicate the number of pages of

JM

'."■.awL. ^ ,......, ,.,.1. ,-. — ■ ' ■'■■w.„^... .»..i.^-. —.

Page 04

a particular age (and write modification) in the page

table memory at any given time. The registers can be

both read and written from the processor and are

automatically updated by the MMD.

XXX AGE CNT

15 12 11

AGECNT - Age count - number of pages in the page table

memory with the Write Modification Bit (05) and age

bits [01:00) set to the address of this register.

XXX - Non-existent

1.5 AST(1), 76^214

This 16 bit register, Address Stored on Trap, contains

the low order 16 bits of the memory address requested

that caused a fault. It is read-only.

1.6 DST (1), 764216

This 16 bit register, Data Stored on Trap, contains the

16 bits of data that would have been written into

memory if a trap had not occurred. Its contents are

only useful if the fault occurred on a write memory

cycle. It is a read-only register.

:■■ S'^s-v:;-

.. 11".■ ^^^i^!am^^^^^^^fm'<n „ . , i , _,. .__ ~———

■ Page 6 5

1.7 PCST 76^220

This 16 bit register, Program Counter Stored on trap,

contains the contents of the PC at last CLKIR prior to

trap. It is read-only.

1.8 MST 76Ü222

This register, Map Status, contains the status of

certain bits at the time of a trap. The cause of the

trap, and the MMDENA bit. Bit 15 may be set or reset

and bits 14:12 may be reset under program control. The

rest of the register is read only. While any of bits

14:12 is set, trap information (AST, DST, PCST, MST) is

not modified. When bits 14:12 are reset, updating of

trap information resumes.

MMD
ENA

15

ILLEG.
PG.

14

WRITE
VIOL

TIME
OUT

XX

13 12 11 6

P17 P16 A17 A16 CO ci:

1,8.1 CI - PDP-11 memory cycle control signal

1.8.2 CO - PDP-11 memory cycle control signal

1.8.3 A16 - 16th bit of address referenced at trap

■■' ^mmw i w^^mmsF . „ .u. .■>■■ ^-■■I- -. ■•»«■-;' .•*!*»-■
...... , . —.

Page 66

1.8.^ A17 - 17th bit of address referenced at trap

1.8.5 P16 - 16th bit of PC referenced at trap.

1.8.6 P17 - 17th bit of PC referenced at trap.

1.8.7 write viol - trap was caused by attempt to

write on a write protected page.

1.8.8 illegal pg - trap was caused by reference to

illegal page - (age field all ones)

1.8.9 TIME-OUT - trap was caused by memory not

responding within 5 micro sees.

1.8.10 MMDENA - The memory map device enable bit

may be both read and written. When the MMDENA bit

is 0, the MMD becomes completely transparent,

without however clearing any of its registers. When

returned to 1, operation will continue as it was

before being disabled. MMDENA is reset to 0 by

System Reset.

NOTE: A second input and clock line should bev

provided to set and reset MMDENA (to be used by

possible future modifications)

 - — ^- . - .«IU--.--,"»»--^»«»'——i- ~. ,.

ee • ■«.. -

Page 67

II Page Table Memory (PTM)

The page table memory is a 4K by 16 bit memory which

may be both read and written and is addressed between

locations 740000 and 757777. Its bit assignment is

given below:

RMP WPR WMOD TTJ
15 7 6 5 4

■ •

2.1 RMP - Real Memory Page, The address of a IK page

in physical memory. This is sent as the nine most

significant address bits to physical core if the paging

function is enabled.

2.2 WPR - Write Protect, this bit when true causes a

trap if any attempt to write is made.

2.3 WMOD - Write Modification, this bit when true

indicates that at some time a write occurred in the

page.

1 -

* m

2.H PA - Page Age, these 5 bits indicate the value of

the age register at the last time that the page was

referenced.

Ill Operations performed by MMD

MM

-" "■■'
T*»5W •..^. ^. . - ^ ^—

Page 68

3•1 Reading or ding or Writing of Control Registers

The registers detailed in Section I may be referenced

at the addresses given. An attempt to write a read

only register is a NO-OP. The sections of registers

marked "XXX" are not only undefined but cannot be used

to store and retrieve information. These registers, in

general, function no differently than the registers

used to command PDP-ll I/O devices.

3.2 Reading or Writing the PTM

The PTM may oe used as any other memory to store and

retrieve information. Standard Memory diagnostics may

be run in this memory by simply setting the diagnostic

to t«»t memory between 120K to 124K. The paging

mechanism must, of course, be disabled.

3,3 Initialization Sequence.

Upon power up or a system power clear signal, MMDENA is

set to 0. This allows the system to operate as if the

MMD were not on the system.

3.4 EXT Address Entry

- - ,-'

Page 69

■

M

The HMD will provide 6 data bit inputs for the EXT and

clock or latch input. These inputs should be TTL. A

set of DIP-packaged resistors will be provided for

termination of these lines. The clocking of data on

these lines is performed independently of any MMD

function.

3-5 Paring Memory Peferences

This function, the primary function of the MMD is

described in Section IV.

IV Mapped Memory References.

Memory references are affected by most of the control

registers defined in Section I and, of course, by the

PTM if mapping is enabled. The series of operations

used to finally arrive at a real core address is

complex and for that reason has been divided into 3

sections: the calculation of the address sent to the

PTM, the calculation of the Real Core Address from the

output of the PTM, and other functions such as ageing

which occur during memory references.

^.1 Calculation of PTM address

^.1.0 If BA <17:U> are all ones, the address is a

Unibus device register. (Note: a switch or jumper

should be installed to permit changing Unibus device

^iiupjii. ii iiMnu • . .
■ _ — "•»...v. ...«.«-■■■.-—<••'..-

Page 70

registers from BA <17:1J4> = 1111 to 0011.)

1.1.1 One of the 4 Mode Registers are selected by

Bus Address 16 and 17 as follows:

BA 17 BA 16 Mode Register

0 0 76^200

0 1 76^202

1 0 764204

1 1 764206

NOTE: If, however, MMDENA=0, the contents of the

mode registers are disabled and zero is used as the

contents.

4.1.2 If EXT ENA of the selected Mode Register is

true, the EXT register is concatenated with the bus

address BA <15:00>. If EXTENA is false, zeros are

concatenated. The result is a 22 tit address.

4.1.3 If WRD ADR of the selected Mode Register is

true, the above address is intended as a word

address, and is shifted left one to produce a byte

address. If WRD ADR is false no shift occurs. The

result is a 23 bit quantity, BBA (big bus address or

bus byte address).

- -" . ! 'V*^- ^ "l^M/ V — .— - - !' ■ I .11» IM »--SSgPj^

Page 71

4.1.^ The high order 7 bits of BBA are XOR'ed with

REL, the contents of the relocation field ofi the

selected Mode Register. The result concatenated

with BBA <15:00> is the RBBA (relocated big bus,

address). RBBA <22:11> is the PTM address.

I|.2 Calculation of Real Core Address

4,2.1 The PTE bit of the selected Mode Register

determines whether the page memory is used in

address calculation. If PTE (Page Table) is true,

the high order portion of the Real Core Address, RCA

(19:11) is set to the RMP (Real Memory Page, the 9

least significant bits of PTM).

ID

r
ID

.

- ■

If PTE is false RCA (19:11) is set to Dits <19:11>

of RBBA. RBBA <22:20> are in that case ignored.

Note that if PTE is false, no modifications are made

to tho page table, and normal page table delays are

avoided.

4.2.2 RCA (10:00) are taken from BBA (10:00). This

forms the IK word, 2K byte address within a memory

page.

4.3 Miscellaneous functions during Memory reference

4.3-1 Age Register

During all memory references, unless the AMD bit of

'iUJj , lui; -_: r-

Page 72

the selected Mode Register is true, or PTE is false,

the contents of the age register are loaded into

bits 4 through 0 of the PTM. If AMD is true, PTM

(4:0) remain unchanged.

4.3.2 Write Modification.

During all write cycle-type memory references, the

contents of the WMOD bit of the PTM are set to 1.

During reac cycles this bit is not affected. This

is to be able to avoid writing pages back on to a

disk if the page is unmodified.

4.3.3 Trap Status

During memory references certain information is

stored in case a trap occurs. If the STS bit of the

selected Mode Register is false, AST, DST, PCST, and

MST are updated. If the STS bit is true, the

contents of AST, DST, PCST, and MST are frozen (not

updated).

4.3.4 Traps

A trap occurs if (1) an attempt is made to write

when the WPB of the PRM is true, or (2) the age

r.-. I.I I ■IB-il U.iiiWHI ^„„JJJ.IlJMIIli! ■■ ■■ .■..■-~.^.-.--—^..

D
□
D

f
1

1

i -

Page 7 3

counter is set to all one's indicatinR an invalid

page. A trap occurs because the Unibus signal SSYNC

is not returned causing the processor to time-out.

When a trap occurs, the MMDENA bit is set to 0 which

protects the status information and makes the MMD

transparent. Also the appropriate status bits are

set (illegal page, write violation, and memory

time-out), and no modification is made to the page

table or age distribution registers.

^.3.5 A^e Distribution Registers

These registers provide a record of how many pages

there are with a particular age. This record is

kept by 2 operations. When a memory reference

occurs and the AMD bit is not set, the combination

of the WMOD (write modification) and the PA (page

age) of the PTM form an address that selects one of

the ADR registers. WMOD is used as the most

significant bit, bit 5; and bits 0 through 4 are

taken from the PA. The contents of that location

are decremented. The contents of the location

specified by the present state of the write request

line, or'd with WMOD, and the age register are

incremented. This keeps a record of ^he number of

pages of jach age in the PTM. The age distribution

mmm-'

.■-M iimiiiii, * JUI «LLIU„J ,. p«! .„ _.. . ■■Mil I ■ ■ mi

Page 74

registers are also updated on direct processor

writes to the page table.

P" m. .num. - ..»

□
L-J

D
::

;.- «.,

MODE REGS
(03)

<lt 00>

BA<I7 16>

BA<I7 00>

I w M P

Page 7 5

DMUX<05:00>

O 4-1 MUX

BA<17 14>

EXTENA
M<8>

E X.<05 00>

ALL ONES

) 0

UNIBUS
DEVICE
REG.

-4-
i 0

2-1 MUX

BA< 15:00>

—^
WRD ADR
M<9>

4- SHIFT/
NO SHIFT

REL
M<06 r,0>

AGE REG
<04 00>

43L
AGE
DISTR.
REGS
(0^63)

<H:00>

WRITE REO

-K WMOO. PAGE AGE: A

* WMOD.VWRITE REQ.AGE REG^B
(A)-1 -^A

(B)-M-*-B
IF A^B,DO NOTHING

NOTE:
—1> CONTROL SIGNAL
-*' DATA

4-
w (l

BBA<22 16> 'V-BBA<22:00>

-4

XOR

PTE
M<)0>

4-
i

BBA<15 11>

-4-—

1 0

RBBA<22 n> -'I
V

-^
W MOD

PAGE TABLE
4KX 16 RAM

"^
PAGE
AGE

^

CV-BBA<10:00>

RCP
<08:00>

PAGE —41 't'-WR^E PR0T

AGE
•WRITE REQ.

RBBA<19;11>

RCA<19;00>

MEMORY

ILLEGAL
PG

VALID CORE
ADOR

WRITE
VIOL

MEMORY MAP BLOCK DIAGRAM

—'.'raj' ■•» VVJ^T-^—

Page 76

A TUTORIAL INTRODUCTION TO HERMES

Catherine L. Hausmann
Mario C. Grignetti

April 30, 1976

The Intelligent Terminal Project
BOLT BERANEK AND NEWMAN INC.

Cambridge, Massachusetts

- in» .»,.«■ »^MF«, .., „ ., ■ ■ ■- — ^.....i i.i i lilJli.lllWiW-..;; ~*rm*.i:r-!?jm**J*mw»in.rr.^g-^T*

Page 77

TABLE OF CONTENTS

Page

INTRODUCTION . 78

LESSON i Basics - Readinq Messaqes 80
Startinq Hermes - Initial Survey
Panic Buttons
Printinq Messaqes with <LF> and

D

n

LESSON 2 More Messaqe Processinq 85

Printinq Messaqes with the PRINT Command
abbreviating Commands
Messaqe Lists
FILE
LIST

LESSON 3 Answering and Forwarding Messages 89
REPLY
FORWARD

LESSON i Messaqe Composition 92
COMPOSE
Drafting a Messaqe
SHOW
Editinq

LESSON 5 Selective Printinq - Filters 96
SURVEY
Filters
The ? facility
Multiple Filters

LESSON 6 Workinq with Draft Messaqes 99
f CREATE
j SAVE-FIELD

ADD-FILE

LESSON 7 - Housekeeoinq and Your Messaqe File 103
DELETE

LESSON 3 - Current Objects 106
CSEQUENCE
CONSIDER
CMESSAGE-FILE; GET

LESSON 9 - On-line User Aids 11°
HELP
EXPLAIN
DESCRIBE

■ ■T,-. .-...:..■.■.;.■*»,,.:. ;.., ■^.■.■..,. ■.•■..:.„;, \-::--. ■ •■.-..,■.■.■.■':'■:, '

I' ». ."Mf » »1-ww ._.-.... . . I . in. .IILII

Page 71

A TUTORIAL INTRODUCTION TO HERMES

INTRODUCTION

This guide introduces Hermes, a new system for reading

and processing ARPANET messages. Hermes has features that

help the user read the messages he has received, prepare

messages for transmission to other users, and create and

manaqe files of messages. This guide covers the important

features that let the user accomplish thesrf central tasks.

The material is presented in a tutorial sequence,

intended to take the user in a natural progression through

the various manipulations. The first four lessons cover

enough to let the user accomplish basic message reading,

writing and filing. The last five lessons expand on this

base by introducing more sophisticated techniaues in all

three areas. Having progressed through the nine lessons,

the user can continue to use the guide as a reference source

with the aid of the detailed table of contents. The

material is well laced with concrete examples. To make best

use of what is presented, however, the user should also work

parallel examples of his own.

Since the guide is intended to be introductory in

nature, certain advanced features and techniques are

omitted. For complete coverage of all Hermes details see

the companion Hermes User Guide.

-- ' ■' ■•' -• ^ ••••r-i-M '. L .

Paqe 79

D
. .

This quids is a product of research on advanced

tutorial techniaues in the BBN Intelligent Terminal Project.

The main thrust of that o.oiect is to develor sophisticated,

comoute -based tutorial mechanisms that could be housed in a

computer terminal with powerful processing capabilities of

its own. The IT project has selected Hermes as a context

for tutorial development because of its focus on message

processing - a general oroblem broadly understood bv

potential IT users.

This document was initially preoared to establish the

framework ^or "live" tutorial seouences to be implemented in

a computer. However, it seemed sufficiently valuable in its

own rieht as an introduction to Hermes that we are now

releasing it as a user document in the Hermes Project.

L . u

mm •'■■■• taw— .-1, u, i - ;■.. .« w- r~n* i.v.^^. ■'■■■..i.v- 4—T- 1

Page 80

LESSON 1

Hermes is a new system for reading and processing your mail.

This manual introduces a subset of Hermes that will allow

you to read messages, send messages and do simole message

processing. Type HERMES to enter Hermes. (Parts typed by

the user are underlined. Characters like carriage return

(<CR>) are shown in angle brackets.)

ghermes <CR>

-+ 13 329 24 Feb 76 GRIGNETTI at BBN-TENEXA Welcome
-+ 14 379 28 Feb 76 HAUSMANN at BBN-TENEXA Quotation of
-+ 15 40738 3 Mar 76 BROWN at BBN-TENEXD New Paper
>

Survey of messages

Upon entering Hermes an initial survey is printeo out

of the RECENTMESSAGES in your message file (those received

since you last read your mail using Hermes). Messages read

with other programs are still marked recent and are included

in the initial survey because they were not read inside

Hermes.

Let's look at the first lire in the survey. The "-"

stands for "unseen" (messages never printed out before); the

"+" for "recent" (messages that came in since your last

session with Hermes). This is followed by the "message

I
.-' IIIIJ.1,11.1 ■ • p L.^J—.—J. t1 »^ .■>„.._.....—^u. _ T:

p-T

,1

1

Page 81

number" by which you will refer to the message. Then the

character count, the date, and the author, and as much of

the subject as will fit on one line.

Whenever Hermes is finished doinq somethinq for you, it

prints a wedqe (>) in the marqin to indicate it is waitinq

for you to type a command.

f D

«

;:

Panic Buttons

Before telling vou about Hermes commands let us make

sui.e you understand how to correct mistakes and/or qet out

of sticky or unwanted situations. If you make mistakes

while tvping a command you can correct them with <CTRL-A>,

<CTRL-W>, or . <CTRL-A> erases the last character you

typed; <CTRL-W> erases the last .void; cancels the

entire line. To abort execution of a command and to return

to Hermes (causinq it to print the > nrompt) type <CTRL-E>.

To abort a long printout, type <CTRL-0>; this will cause

Hermes to qive you the > prompt. If vou want to leave

Hermes altoqether, type OUIT <CR>.

Printinq messaqes with <LF> and

To orint the first of your recent messaqes, you type a

linefeed (LF on your keyboard). I will do that now.

L . ..I,.!« ■ -. -.■..:,:..;..■. ■ ■ ■■ . ■■-■: ■■■■■

v::3smmm iwmii m , .-•- J! ■• -. . .«*..-•■:—. .,-^.—^ i —

Page 82

> <LF>
Message 13; 329 chars UNSEEN RECENT
Mail from BBN-TENEXA rcvd at 24-FEB-76 1747-EST
Date: 24 FEB 1976 1559-EST
Sender: GRIGNETTI at BBN-TENEXA
Subject: Welcome
From GRIGNETTI at BBN-TENEXA
To: Tutor
Cc: GRIGNETTI
Message-ID: <[BBN-TENEXA]24-FEB-76 15:59:44-EST.GRIGNETTI>

Welcome to "our first lesson on HERMES.

Good luck!

Mar io.

Let's take a look at this message. At the beginning there

are a few lines of "envelope" information headed by the

words Date:, Sender:, Subject», From:, To:, Cc:, and

Message-ID:; these are called "fields". The Date:, Sender:,

From:, To: and Message-ID: fields always appear in messages

sent using Hermes. The Subject: and the Cc: fields are

optional. The meaning of Subject is clear enough. The Cc:

stands for Carbon Copy; people whose names aopear there will

receive a coov of the message.

The From: field is normally the same as the Sender:

field, and Hermes sets it up that way automatically.

Sometimes, however, the author of the message is not the

person that sends it out (your secretary (Sender: Secretary)

sends out a message for you (From: you).) In these cases the

From: field can be specified by the sender.

Page 83

There is another obvious field that is not preceeded

explicitly by a name — the text of the message itself is in

the Text: field.

.

To print each subsequent message you continue typing

linefeed (<LF>). To back UP one message and print it again

you can hit the key. With these two commands you can move

up and down your "message file" printing out messages in

seauence. The message you just printed is called the

"current message" (CMESSAGE). (There are other commands

that change the cmessage that you will learn about later.)

In between these one-character commands you couli type other

commands (that you'll learn soon), for examole, to reply to

the current message, file it away for future action, send a

reply to someone else, etc. After doing any of these you

can continue printing your messages one at a time.

D

Concepts covered

Hermes
> prompt
initial survey
RECENTMESSAGES
message number
fields

To:
Date:
Sender:
Subject:
From:
Cc:
Message-ID:
Text:

<CTRL-A>
<CTRL-W>
<CTRL-0>
<CTRL-E>

r- (, *. , _ .

<LF> command

command
CMESSAGE
messaae file

Page 84

-" '«uiipi im—'-wm ii.j..'i^w -^r. : r~. .„ns- :—/utiwya»-«».«!!» M —

■I
Paqe 85

I

n

LESSON 2

Printinq Messages with the PRINT Command

Another wav of printinq messages is by means of the

PRINT command. You mav use this command to skip anywhere in

the message file and orint a messaqe. For example, to orint

your second messaqe you could tvpe PRINT followed bv "2",

and a <CR>;

> print 2 <CR>
Message 2: 298 chars
Mail from 38N-TENEXB rcvd at 19-DEC-75 1052-EST
Date: 19 DEC 1975 1019-EST
From: White
Subject: Found
To: Tutor

h sterlinq silver bracelet was found at the Aauarium
Thursday night near the coat rack. Please claim it.
 Mary

1 '

The PRINT command changes the setting of the current

message (as with <LF> and ")j CMESSAGE is now set to 2. To

check this, try using the ~ command and see what happens.

(Remember that the command prints the message preceding

the current message.)

■

- -

>_ <CR>
Message 1; 398 chars
Mail from 3BN-TENEXA rcvd at 18-DEC-75 112B-EST
Date: IB DEC 1975 1052-EST
From: GOLDMAN
Subject: A new order of widgets
To: Tutor

""J w i.-'L-j.,^—;—,. ..,.. u, „ im .■w w ■■■

Page 86

A new order of widgets has arrived and can be picked up
at my office. Please only one widget to a customer.
—Frank

Abbreviating commands

You can save yourself some typing by invoking the

command recognition capabilities of Hermes. After typing a

few initial characters of a command, you may hit the <ESC>

key. If you haven't typed enough characters to specify a

command uniquely, Hermes will sound the bell to indicate

that you must type more characters. Otherwise, the rest of

the command will be printed out as if you had typed it

entirely. In addition Hermes will print a few words

(enclosed in parentheses) to cue you as to what it expects

for the next part of the command. I will print message 14

now using <ESC> afcer PRINT to invoke command recognition.

>print (messages) 14 <CR>
Message 14; 379 chars UNSEEN RECENT
Mail from BBN-TENEXA rcvd at 28-FEB-76 1746-EST
Date: 28 FEB 1976 1605-EST
Sender: HAUSMANN at BBN-TENEXA
Subject: Quotation of the Week
From: HAUSMANN at BBN-TENEXA
To: Tutor
Message-ID: <[BBN-TENEXA]28-FEB-76 16:05:30-EST.HAUSMANN>

"Will there be any unforeseen complications?"

John Seely Brown
26 January 1975

im^'Ul'-lWW IB, illl!"« . ,

,

i:

Poqo 87

Message Lists

As hinted by the cue words, you can specify a list of

messages rather than a single one after PRINT and after many

other Hermes commands. There are a lot of ways of

specifyinq a message list. A message list can be a single

message, like 6, or it can be an arbitrarily ordered list of

messages like 7,8,3, or it can be a seauential list of

messages like 3 through 8 which could be specified

3,4,5,6,7,3 or 3:8. The colon means "through". To specify

a message list like 5 through the last one in the message

file, type 5:last. To specify from the current message

(CMESSAGE) to the last message, type .:last. The "." stands

for the CMESSAGE -- it is an abbteviation.

The FILE Command

After you read a message vou may wish to process it

further by either filing it away or listing it at the

lineprinter. Let's file CMESSAGE in a file named

QUOTES.TXT. I will do this with the FILE command and

command recognition.

>fUe (messages) 14 (on file) gugtes^txt [Old version] <CR>
Delete message after writing?: no

14

A CODV of the message is now on QUOTES.TXT and

'r-

:.^am *^m*nm . .. ,,. ...~» mi m-— -~..— -.«■-... .„r. IlilUlllllHMIIH

I ■

Page 88

MESSAGE.TXT. It has not been deleted from the current file

As you saw in the initial sufvey, the next message

(number 15) is very long. If you wanted to print it at your

terminal you could use the <LF> command. Because it is so

long you would probably want to abort the printout by typing

<CTRL-0>.

The LIST Command

A good way to read a long message is to list it at the

lineprinter. To do that you use the LIST command. I will

use it now for the long message (number 15).

>list (messages) 15 <CR>

So far we have dealt mostly with manipulating mail that

you received. In the next lesson we'll turn our attention

co sending mail.

Concepts covered:

PRINT command
FILE command
LIST command
CMESSAGE = .

■ ■
-.. —

Page 8 9

I

:

LESSON 3

The REPLY Command

Frequently while reading your messages one at a time,

you may wish to send out a reply. An easy way to do that is

by usinq the REPLY command. You type REPLY, followed bv the

number of the message you are replying to, and a <CR>.

Hermes will automatically set things up for you so that all

you have left to do is to type the text of your reply. when

you are finished, you type a <CTRL-Z> to tell Hermes you are

done with the Text: field. Before sending out the reply,

Hermes will check with vou so that if for any reason you are

not satisfied with the message it will not be sent.

Let's reolv to that long message (number 15) with the

text "I'll read vour paper this weekend". It is important

to remember to type a carriage return after you type REPLY

and the message number. (The <CR> will no longer be

printed explicitly, but keep in mind that it is still there

at the end of command lines.) I will avail myself of the

help provided bv <ESC>.

>£eply (to message) 15
To: Tutor
Subject: (NEW PAPER)
In-Reply-To: Your message March 3, 1976
(Type text of reply, to <CTRL-Z>)
Text:
Lll.1. £??d vour paper this weekend. <CTRL-Z>
Format?:"no ~ " ~ '
Send?: yes
MessagelBBN-TENEXA]B-Apr-76 19:42:20-EST.TUTOFO sent

I .1 ■ >.i'M,k/ .. , , ™_«— ^i i . "WL ■; «- -m ■ ,,_»-•.—— v_ ^—T-

Page 90

Hermes created automatically the From:, Subject: and

In-Reply-To: fields. The From: field of the message replied

to becomes the To: field of the message being sent. The

Subject: field is the same and the In-Reply-To: field

identifies the message being replied to.

We'll see the usefulness of answering NO to "Send?"

very soon.

The FORWARD Command

Sometimes you may want to send someone a copy of a

message that you yourself have received. You may do so with

the FORWARD command. Type FORWARD, the message number and

<CR>. You will immediately be prompted for the To: field. t

Type the addressee and a <CR>. Then you will be asked if

you want to make any comments. If you want to make comments

type YES. Type your comments and end them with <CTRL-Z> as

you would with the Text: field. This text will be placed at

the beginning of the message. Hermes will then type "Send?"

and you respond with YES or NO. I will now forward the v

message containing the quotation to Smith with the text

beginning "For your collection".

>forward (messages) 14
ToT~?mIEh
SubjectT'A Quote
Jcmments (to Z):
For your collection^ <CTRL^Z>
fö7mit?: no
Send?: yes

I'WlV-tf . J.'■ ■■ .I" I ., ... j ■ i r r 1

Page 91

Messaqe <[BBN-TENEXA]8-APR-76 19:43:35-EST.TUTOR> sent

Concepts covered

REPLY command
FORWARD command

- .

...

■■-..■■.

..■■■■■ ■ ...■:.•..■■

Page 92

LESSON 4

The COMPOSE command

A more general way to send out messages is to use the

COMPOSE command. COMPOSE works pretty much like SNDMSG,

prompting you with the fields you need to send an ordinary

message, i.e., the To:, Cc:, Subject: and Text: fields. If

you don't want to send carbon copies to anyone, just type a

<CR> after the Cc: prompt. Similarly if you don't wish to

specify a subject just type a <CR> after the Subject: field.

If you want to send the message (or copies of it) to more

than one person,]ust type their names separated by commas,

and terminate with a <CR>. You can correct your typing

mistakes using <CTRL-A>, <CTRL-W> and , the same as

with Hermes commands. In addition, there are a few more

facilities to help you compose your message.

If a line has gotten messy because of too many mistakes

and corrections, you can see it cleaned up by typing

<CTRL-R> (R for Retype). Tyoing <CTRL-S> will show the

entire field you are typing.

To signal Hermes that you are finished typing the Text:

field, cype a <CTRL-Z>. Hermes will then ask you if it is

OK to send the message, and you should answer YES.

(Answering NO allows you to go back and change the message

as described below).

Paqe 93

I will now COMPOSE a messaqe to Green:

>compose
P?ompEe3 messaqe composition:
To: Green
Cc:
Subject: Hermes
Text:
Hermes is great fun to use^ <CTRL-Z>

Messa5e:<T8BN-TENEXA]8-Apr-76 19:44:46-EST.TUTOR> sent.

f D

Drafting a Messaqe

Occasionally you will realize you made a mistake when

it is too late or too inconvenient to fix it in the above

described manner. It is here that answering NO to Send?

comes handy. If vou answer NO, Hermes will out you in a

"draft state" and will ind^ ,te this by printing two wedges

in the margin instead of one. Once in the draft state, you

can Pick out individual fields and work on them

independently of the others. For example, typing To:

followed by a name will add that name to the end of the To:

field in your draft. You can add a new field to your

message in the same way, for example, an Fee: field. Fee:

stands for "File Carbon Copy". It provides a good way of

taking a message that you ha/e created and storing it into a

file for later reference.

4 ,.

The SHOW Command

To see the whole contents of a field you can use the

.^ • '<m ■ ■! »»»» —-«. —-

Page 94

SHOW command. To use it simply type SHOW followed by the

name of the field you want to see. To see all fields, type

SHOW ALL.

Edi t inq

Most commonly, the mistakes you make will not be simple

omissions at the end of a field, but will require more

complex editing operations in the middle of, say, the Text:

field. At this point you may call any of three editors —

TECO, NETED, or XED. To edit a field, you type the name of

your favorite editor followed by the name of the field. If

you omit the latter, Text: is assumed. For example, to edit

Text: usinq TECO, simply type TECO and a <CR>. After you

are done with the changes you want, type ;H<ESC> and you'll

return to the DRAFT state. (Do not use EX<ESC> or ;U<ESC>.)

After you are done and you are satisfied with the message,

you type SEND. This will send the message. Then you type

DONE to return to command level.

Let's create a message to Burton using the COMPOSE

command. I will answer NO to "Send?" in order to enter the

Draft state. Then I will add an Fee: field — filing a copy

of the message in the file EDITORS.TXT.

>compose
Prompted message composition;
To: Burton
Cc: wHIte
Subject: Editors

^**mimrT~?m??mm*mm .-»-■■- — --■ -«—«•«. ;i-

D

Paqe 95

Text:
I 2£!:ieI ^2 y§^ T§?9 ^l}?1] I edit texju <CTRL3Z>
Format?: no
Send? jTO '
>>Fcc: (filenames) editors^txt [New file]
>>send [Confirm]
Message <[BBN-TENEXA]8-Anr-76 19:47:30-EST,TUTOR> sent

Concepts covered:

COMPOSE command
SHOW command
<CTRL-R>
<CTRL-S>
draft state
Fee: field
TECO, NETED, XED
;h

■PS:: - .• -"H •■ " . I ■'•. UHU ' ' . "■ I"""' ' '" — . ~ .. ~— — I ■ ■*. -■ , . v

Page 96

LESSON 5

Selective Printinq -- Filters

The SURVEY Command

Remember that th initial survey we qot when we entered

Hermes showed only RECENTMESSAGES. To see a survey of the

whole message file use the SURVEY command.

>survey
 T 398 18 Dec 75 GOLDMAN at BBN-TENEXA New Widgets

2 298 19 Dec 75 WHITE at BBN-TENEXA Found
3 303 25 Dec 75 AIGHES at BBN-TENEXA Letter from the
4 111 2 Jan 76 MORTON at BBN-TENEXD Typewriter needed
5 142 18 Jan 76 AIGHES at BBN-TENEXA Reminder
6 546 20 Jan 76 MCCARTHY at ISID Using 2-Color Ribbons
7 918 22 Jan 76 LUCA at BBN-TENEXA Typewriter Received
8 489 28 Jan 76 SUSSMAN at BBN-TENEXA IEEE Speakers
9 570 29 Jan 76 SMITH at ISID A poll on voting choices

10 237 31 Jan 76 SUSSMAN at BBN-TENEXA IEEE tickets
11 287 31 Jan 76 SUSSMAN at BBN-TENEXA IEEE proceedings
12 327 5 Feb 76 SCOT at 3BN-TENEXD Quote from Abe
13 329 24 Feb 76 GRIGNETTI at BBN-TENEXA welcome
14 379 28 Feb 76 HAUSMANN at BBN-TENEXA Quotation of the
15 40738 3 Mar 76 BROWN at ISID New paper

Filters

Rather than taking time to survey your whole message

file, you mav wish to see only a certain group of messages,

for example those that are from a certain person or

delivered after a certain date. "Filters" are used to cut

down the number of messages that you are working with. You

may filter according to Sender, the date before, on, or

after which they were sent, whether they are seen, unseen,

deleted, or undeleted, etc.

—-— ",»■" .»'. ■^. W«r- ■ -■»...-.«J I«. I.■■!-■..

it W

To survey all messaqes from Sussman tyoe

SURVEY FROM: SUSSMAN

Paqe 97

Here s what results when the above line is typed to Hermes

D

^csnrvev (messaqes) from: Sussman >survey (mes ag j^-^-gug^^ IEEE speakers

13 2il 30 Jan 76 SUSSMAN IEEE tickets
11 287 31 Jan 76 SUSSMAN IEEE proceedinqs

The ? Facility

At any place in any Hermes command you may type "?,, to

see the various options of what you may tvoe next. This is

a good way to become more familiar with Hermes-

capabilities. I will now do the same survey anain, but this

time I'll type a ? to see all the various seouences and

filters that could be used.

m m

>survey (messaqes) ?
msq
LASTMESSAGE
CMESSAGE
ALL
PREVIOUSSEQUENCE
CSEOUENCE
Date:
From:
To:
Cc:
Bcc:
In-Reply-To:
Reference:
Keywords:
Precedence:
Messaqe-Class:
Special-Handlinq:
Messaqe-ID:

_J

.*.mr- --• mmmmsi-sr, —■

Page 98

or SURVEY that prompt you for (messaqes), you can type a

sinqle messaqe, a "." standing for CMESSAGE, a list of

messaqes or a qroup of messaqes further specified by a

filter or multiple filters.

Concepts covered:

SURVEY command
Filters
? Facility

mttm

Eüv .. -«"^w^"- m i ■ «i-wiu .'-,.,. . ., .'i!" J, ii , »IN .„«.-«..._*——,>_.. .-

Page 99

.

,

D

r

LESSON 6

The CREATE Command

Rather than composinq messaqes directly, usinq the

COMPOSE command, you may wish to proceed in a more leisurely

way by working first on a draft of the message you intend to

send. You begin creating a draft bv typing CREATE <CP>.

Hermes will print two wedges. You put together the draft by

typinq out the fields of your choice, one at a time, with

the appropriate text for each field.

Let us now qo into more detail on what an addressee

list looks like — the contents of the To:, Cc:, and Bcc:

fields. (Bcc: stands for "Blind Carbon Copy".) You recall

that an address list may be a sinqle name or a list of names

separated bv commas, like:

BROWN,SMITH,MURPHY

Each sinqle name can also have a site associated with it,

like:

BROWN^BBNA

If you find that your address list is longer than one line,

end the line with a comma and you may continue the list on

the next line.

Sometimes you mav type in the names of people you want

to send messages to only to find ^hat you have left out one

name. No need to tvpe the whole list over again. You can

add to any field by typing the field name again and what you

- ■■**m*•'■'*****lmlc^"

Paqe 100

want to add. This will be appended to the original field.

The SAVE-FIELD Command

If you often find yourself typing the same list of

addressees each time you send a message, you may wish to

keep around the names on a file. Then when you get ready to

type in the list of names, you may instead insert the

contents of the file. To save any field on a file, use the

SAVE-FIELD command:

>>save-fie^d (field) to^ (on File) computerpeople [New file]

The ADD-FILE Command

To retrieve the file just created and add it to a

field, you would use the ADD-FILE Command. It will ask you

for the file name and what field you want to add it to. You

may often want to use the ADD-FILE command to insert the

contents of a file, say a progress report or a requisition

order, into the Text: field. Let's say you have a report

you want to send out which you want to precede with the

heading "Please send your comments". To accomplish this,

enter the heading and then use ADD-FILE to bring in the main

text.

>create
>>textV (characters to "Z)
Please send your comments. <CTRL-Z>

U-.J . '- , . .I""' .'. i — ■' —«W. .- .«»- ■ —- _^—-v.

Page 101

Ö

>>add-file (filename) report^txt
>>

I could have appended more text at the end of the Text:

field by typinq Text: again and the material.

After you type a field, say the Text: field, you may

wish to see if you have typed what you wanted. Recall that

you may see a field by typing SHOW followed by the field

name. To see all fields type SHOW ALL.

After seeing the Text: field you may wish to make some

changes. Remember that you may call any of three editors -■

ThlCO, NETED, or XED. To enter TECO, type TECO. Make the

changes usinq the available TECO commands, then return to

the draft state using ;H.

[]

• i

>>create
>>tö7'(Addressees) Hausmann
>>text^ (characters to "l)
New phone numbers^ <CTRL-Z>
Format?: n
>>add-file (filename) telephone.yl (to part) text:
>>süb]ecti A memo to the staff
>>show all
To: HAUSMANN
Subject: A memo to the staff

New phone numbers

New phone numbers for the office staff.
See the directory in the lirarv.
>>teco^ (field) text:

79 CHARS
*r£ary$brarv$
*lh$
RepTace the Text: field?: yes
>>format
>>sencf TConfirm]

■ «"«r-. „„- — 1

Paqe 102

Message<[BBN-TENEXAl23-Apr-76 14:29:51-EST.TUTOR> sent

Concepts covered:

CREATE command
SHOW command
SAVE-FIELD command
ADD-FILE Command

^■MlMiH wamm

w^mmrnwmim/ ..,. i. , . r^ , .-«- ■—.. .- -. .—

Paqe 103

ft :■.

l

L

LESSON 7

Housekeepinq and Your Messaqe File

Once in awhile you should go throuqh your message file

and "clean it UP". That is, look at the messages, decide

what to do with them; either delete them, leave them, or

file them away in another file. You may wish to do this

every time you get new mail in Hermes. Or you may wait

until your file qets unwieldy. Whichever way you choose,

the method is similar.

You should beqin by surveving your message file. If it

is quite lonq, yoi' can list the survey on the lineprinter by

tvpinq "SURVEY ALL LPT:".

::

>survey (messages) all (on file) Ipt^ [Confirm]

The DELETE Command

Let's suppose we have decided to delete all messages

from Aighes. Remember filters may be used with any command

that is expecting a message list. They can be put to good

use here with the DELETE command:

>delete (messages) from aighes
3,5"

(Note that the DELETE command only marks these messages for

,:*mmm^*mMMmm..mimi , .. i „...„.i..« .Mt,. , .. _.., .- mm. « •» >■. ; .„■»-■■■^.. ««»—«.^ ;

>.

Page 104

deletion; it doesn't physically remove them until you leave

Hermes.

I want to file the oldest messages (those received

before 1-1-76) into a file called OLDMSG.TXT. I can

accomplish this by the FILE command with a filter.

>file (messages) before 1-1-76 (on file) oldmsg.txt [Old
version]

Delete message after writing?: y^
Message 3 is marked deleted: Can't be filed.

1,2

A lineorinter listing of messages whose Subject:

contains IEEE will be sufficient for my records:

>list (messages) subject: IEEE
>delete (messages) subject; IEEE
8TT0,11 '

Now to do a survey of the whole message file and see if

there are any unseen messages:

>survey
Message 1 is marked deleted.
Message 2 is marked deleted.
Message 3 is marked deleted.

4 111 2 Jan 76 MORTON at 3BN-TENEXD Typewriter Tables
Message 5 is marked deleted.

6 546 20 Jan 76 MCCARTHY at ISID Using 2-color ribbons
7 913 16 Jan 76 LUCA at BBN-TENEXA Typewriter received

Message 8 is marked deleted.
9 570 29 Jan 76 SMITH at ISID A poll on voting choices

Message 10 is marked deleted.
Message 11 is marked deleted.

12 327 5 Feb 76 SCOT at BBN-TENEXD Quote from Abe
13 329 24 Feb 76 GRIGNETTI at BBN-TENEXA Welcome
14 379 28 Feb 76 HAUSMANN at BBN-TENEXA Quotation of the

^a

VT1 - vi,'A,-iW -■ .*» Wr Mü«« w jKsr-a-

Paqe 105

-+ Irj 4«733 3 Mar 76 BROWN at 1SID New Paper

Yes, that long message has not been seen. If we wanted

to look at the first few lines we could PRINT it, and use

<CTRL-0> to abort the printout when we've seen enough.

D

Concepts covered:

DELETE command

■..,■: ■.<■;■■

» K'*i*iw—r—r-—.J «...j ' -,. .— ■~m. ■ —•»——. >_ .,- • -.-r"

Paqe 106

LESSON 8

Current Objects

CSEQUENCE

In the preceding examples we have used filters to cut

down on the number of messages that we are loo. ing at. But

this use of filters only applied to the message sequence for

one command. Suppose you wish to refer to a particular

message sequence over and over again. To do so you could

make use of an object called the CSEQUENCE which stands for

Current sequence.

The CONSIDER Command

When you first qet into Hermes CSEQUENCE is set to

ALLMESSAGES. You can reset it with the CONSIDER command.

For example, suppose you want to create a CSEQUENCE that

contains all message that have anything .o do with

quotations. You would do this by typing:

CONSIDER SUBJECT: QUOT

Note that you don't have to type the whole word that you are

searching for. Now I will set CSEQUENCE to all messages

with Subject: typewriter:

>consider (messages) subject^ typewriter

'. ■ -! IINJl MIIM „.»- ■ ■mm**-«*' «»ii'ifia .. ^—

Paqe 107

Now watch while I type SURVEY followed b/ <ESC>, <ESC>.

>survey (messages) CSEQUENCE
4 111 2 Jan 76'*MORfÖN at BBN-TENEXD Typewriter needed
7 918 22 Ja-i 76 LUCA at BBN-TENEXA Typewriter received

You can see that the SURVEY command defaults to CSEQUENCE.

Many commands do.

I forgot that message 6 should be added to CSEQUENCE.

It also has something to do with typewriters. I don't need

to type the CONSIDER command all over again. Instead I can

use the CSEQUENCE editor. To add messages to the CSEQUENCE,

type ADD and the message list. To leave the editor type

DONE.

>edit (object) cseouence
>'>"ädd (messages) 6
>>show
4,7,6
^>done
>

Notice that when we typed SHOW, the messages were no

longer arranged in ascending order by date. This is because

the sequence was not put together one message at a time in

order, but instead it was put together bv groups and single

messages all out of order. Suppose now we want to reorder

the rressages by date. Again we enter the CSKQUENCE editor.

We will sort the messages contained bv date bv tvping SORT

followed bv DATE; then DONE to leave the editor.

I, -i mi "i m. ••■J'mni .. ,1 <i"<" « ,,i .HI i

Page 108

>eclit (object) csequence
>>sort (by) date
>>show
4,6,7"
>>done

Now that we have a new CSEQUENCE about typewriters what

can we do with it? We can move through it with the <LF> and

commands handling each message one at a time. Or we can

file CSEQUENCE in a file, let's say called EQUIPMENT.TXT for

later use:

>file (messages) csequence (on file) equipment.txt [New
filH

Delete message after writinq?: y
4,6,7

Now we will introduce a new concept, "CMESSAGE-FILE".

CMESSAGE-FILE; the GET Command

When you first enter Hermes, the file that

automatically gets read in is named MESSAGE.TXT. This

becomes what is termed the "CMESSAGE-FILE" (standing for

"Current" message file). I have just created a message file

called EQUIPMENT.TXT. Let's focus our attention on it now.

In other words let's make it the CMESSAGE-FILE. This is

done with the GET command.

>get (message-file) equipment^txt^l
Expunge and re-number the message-file?: y

— .•——■.I •• w. -. .„»-.■■-»•.-—»»—«.— «—-~

s:.-

H I

D

a

n

D

::

Page 109

MESSAGE.TXT is no longer the CMESSAGE-FILE. EQUIPMENT.TXT

has taken its place. All Kermes commands vou perform now

will be done on that file. You can make any message file

that you created with the FILE command into the

CMESSAGE-FILE. This gives you a way of keeping down the

size of the MESSAGE.TXT file by filing messages away into

various small message files organized by subject, or author,

etc. You may then access them with the GET command when you

want to work with their contents.

Concepts covered:

CSEOUENCE
CONSIDER command
GET command

-^ ii m' ■w"pwwr~^!i~,p^^pp»~— mmmmr —i i .■"■^w.-. mm -~—

Page 110

LESSON 9

On-line User Aids

The HELP, EXPLAIN, and DESCRIBE Commands

Before leaving you now, there are three commands for

getting information about Hermes that I would like to tell

you about - HELP, EXPLAIN, and DESCRIBE. The first, HELP,

gives a brief introduction of the on-line aids available in

Hermes. You simply type HELP. It proceeds as you wish it

to by asking if you wish to see more information about

specific topics, bypassing topics that you aren't currently

interested in.

The EXPLAIN command permits you to explore a set of

brief descriptions of the main concepts in Hermes. These

descriptions are arranged in a tree-like structure with

nodes higher in the tree being more general, and nodes lower

being more detailed. To use this command, type EXPLAIN

followed by the topic you wish to know about.

The third user aid command, DESCRIBE, provides

reference information concerning various aspects of Hermes.

The command is available at the top level (when prompted by

a single ">"), and as a subcommand from within EXPLAIN.

DESCRIBE provides a paragraph or two of reference

information concerning the topic you give it. To use it,

type DESCRIBE followed by the topic.

t^lWJT -I,, _ Mll, . I

Page 111

With both EXPLAIN and DESCRIBE there is a "?" feature

to help vou narrow down the topic you are looking for. For

example, I'm looking for a category having something to do

with the topic Profile. I may type EXPLAIN PROFILE and then

type a "?" to see all the topics that begin with those

letters. I will do thc't now, and tuen choose one of the

topics:

.:

11

>explain (topic) pro^Ü?7

PROFILE"
PROFILE-CONTENTS
>Explain (topic) profile-contents
PROFILE-CONTENTS
The profile contains three sort of information:

a) Switch settings: there are certain aspects of HERMES
which are tailorable to behave in one of a few (often 3)
different ways. Each switch controls the behavior of one of
these aspects.

b) Templates: these are you choices for defaults, and
you own personal templates.

c) Filters: these are your choices for defaults, and
you own personal filters.
1. For something on switches, type DESCRIBE SWITCHES.
2. For something on templates, type DESCRIBE TEMPLATES.
3. Filters
>>

At this point I may choose one of these three things to do,

or I may use DESCRIBE or EXPLAIN again for a different

topic. Tvpe DONE at the >> prompt to Leave the EXPLAIN

command.

You have read about many of the important features of

Hermes. These include reading messages, preparing messages

for transmission, and creating and managing files of

messages. Hermes is a powerful and large system and only a

—tmmm' WL.,'.. ,»•»#-.■■■■"«•■:—* mmu ^ -TT^

Page 11:

subset has been covered in this introductory document. You

can expand your knowledge about Hermes by making further use

of HELP, EXPLAIN, DESCRIBE, the ? feature, and <ESC>.

D

Concepts covered;

HELP command
EXPLAIN command
DESCRIBE command

